Skip to main content

In the Wind: a new generation of organ builders

Organbuilders under age 40
Organbuilders under 40 at the 2022 convention of the AIO (photo credit: The American Institute of Organbuilders)

Lost arts

The stone carvings in an ancient cathedral, the sparkles of light on Rembrandt’s tunic, the deep colors of a Tiffany lampshade, the intricacies of a Renaissance tapestry. These are all experiences available to us as we travel to ancient sites and visit museums. They are living testaments to the skills of artists and artisans, expressing their visions, observations, and thoughts in physical media. Did Rembrandt mix his paints from gathered materials as observed in artworks already old when he viewed them? Did he know that his paints would retain their colors and stay on the canvas for 350 years? Visit a modern artists’ supply store, and you will find rack upon rack of tubes of pre-mixed paints from different manufacturers. Do they expect that their products will last on canvas until the year 2352? Do the artists who buy and work with those paints trust that a glimmer of light on the nose of a subject will beguile viewers three centuries from now?

We play and listen to centuries-old organs, experiencing the same lively sounds that musicians and congregations heard over 600 years ago. We marvel at the monumental organ cases, knowing that they were built without the aid of electric milling machines. Perhaps some of us have tried to saw a board from a log by hand. I have. I can tell you it is hard work; it is tricky to produce a board that is anything like straight; and it takes a long time. We read that eighteenth-century organs took eight or ten years to build. Even so, Arp Schnitger (1648–1719) produced ninety-five new organs, forty-eight of which survive. Multiply that by the number of boards sawn by hand—case panels, toeboards, rackboards, keyboards, stop action traces, and hundreds of thousands of trackers. That many organs is a significant life’s work for a modern organ builder. And remember, delivering a pipe organ in those days involved oxcarts and rutted dirt (or mud) roads. Or did Mr. Schnitger set up a workshop in each church, casting metal and soldering pipes on site? That would simplify the logistics.

Something like 2,500 “Hook” organs were built between 1827 and 1927 by E. & G. G. Hook, E. & G. G. Hook & Hastings, and Hook & Hastings. Organs were shipped from the workshops in Boston to churches below the Mason-Dixon Line before the Civil War, to California, and throughout the Midwest. By then, steam ferries and railroads were available to make shipments easier—the tracks ran right into the workshop. During the same period, builders like Henry Erben, George Hutchings, George Stevens, and George Jardine, among many others, combined to build thousands of organs across the United States. With the introduction of electricity to pipe organ keyboard and stop actions, Skinner, Möller, Austin, Schantz, Kimball, and others combined to build as many as 2,500 new pipe organs a year in American churches during the 1920s.

Here’s to the crabgrass, here’s to the mortgage . . . .

So sang Allen Sherman in his 1963 smash hit recording, My Son the Nut, the same album that included “Hello Muddah, Hello Fadduh. . . .” The song was about the migration from cities to suburbs in the 1950s: “walk the dog and cut the grass, take the kids to dancing class, Jim’s little league got beat again.”1 During the 1950s and 1960s, suburban churches blossomed. The populations of towns surrounding Boston, Philadelphia, Chicago, New York, and countless other cities exploded. Twenty years ago, I served a church as music director in a suburb of Boston that never had more than 2,000 residents until the circumnavigating commuter highway Route 128 (now I-95) was built around 1960. Within ten years, there were 15,000 residents, and the little country Congregational church built an impressive new sanctuary with an extensive parish house and a three-manual organ.

Many if not most of those powerful suburban congregations commissioned new pipe organs. Where I grew up, the ubiquitous New England town square had two or three competing churches. One town near home had two three-manual Hook organs built in 1860 and 1870. Another had three Aeolian-Skinners. And by the time I graduated from high school, my hometown had two organs by Charles Fisk, one of which has its fiftieth anniversary this year.

A new wave

Through the 1960s, 1970s, and 1980s, hundreds of American churches committed to commissioning new organs built by “boutique” builders of tracker organs, many of which replaced impressive and valuable electro-pneumatic-action organs. Of course, many of those organs had in turn replaced impressive and important nineteenth-century organs. The Andover Organ Company, then led by Charles Fisk, was among the first of the new wave of organ companies. Charles Fisk spun off to start what became C. B. Fisk, Inc., along with the founding of, in no particular order, eponymous organ companies such as Noack, Roche, Brombaugh, Bozeman-Gibson, Bedient, Taylor & Boody, Dobson, Visser-Rowland, and Jaeckel. Casavant started building tracker organs and firms like Wilhelm, Wolff, and Létourneau spun off from there in the following years.

As some of the “older” new firms began “aging out,” a new wave of impressive companies came along such as Juget-Sinclair, Richards, Fowkes & Co., and Paul Fritts, and companies like Nichols & Simpson and the revitalized Schoenstein & Co. started building new electro-pneumatic-action organs of high quality inspired both by the electric-action masterpieces of the early twentieth century and by, I believe, the increasingly high standards of the boutique organ movement. Toward the end of the twentieth century, American organbuilding was a vital, if small industry producing beautiful instruments of all descriptions at a rapid rate.

American organbuilders gathered in Washington, DC, in September 1973 to discuss formation of a new professional organization that would take the name American Institute of Organbuilders. This purpose statement was published in the program book for that gathering:

• to be the first such convention in recent times in North America and to be a model for future conventions of this type to be held regularly;

• to promote the exchange of principles and ideas among established organbuilders to aid in the improvement of the instrument while lowering its costs and ensuring the security of our future;

• to educate ourselves in potential new technologies and construction procedures, some of which are being employed by other industries and arts but perhaps not yet fully realized and exploited by organbuilders;

• to provide the many suppliers of organ parts and materials, many of which are new to our field, with the opportunity to display and demonstrate their developments and ideas where many builders may jointly view and discuss these products;

• to study some general business problems of concern to the organ industry, and to propose courses of action that might be taken by organbuilders, both individually and collectively, to alleviate these concerns;

• to enable social exchanges between organbuilders and their families; to provide families of organbuilders with the opportunity to share in the appreciation of the greater glories of the profession through mutual enjoyment of a convention environment and its program of entertainment designed for all.

The last decades of the twentieth century were very productive for American organbuilding, and we must not forget the vast number of European organs imported to the United States. E. Power Biggs famously purchased an organ from Flentrop that was installed in the Busch-Reisinger Museum (now Busch Hall) at Harvard University in 1957. He made it instantly famous with his fabulously successful series of recordings, Bach: Great Organ Favorites. Many of my friends and colleagues, myself included, cite those recordings as influential to devoting a lifetime to organbuilding. That organ was followed by a flood of Flentrops crossing the Atlantic, a wave greatly advanced by Fenner Douglas, professor of organ at Oberlin in the 1960s and early 1970s, whose influence led to at least dozens of Flentrops installed in American churches and universities, notably those at Oberlin College and Duke University. Also in 1957, Trinity Lutheran Church in Cleveland, Ohio, installed a four-manual, sixty-five-rank Beckerath organ, three years before the monumental five-manual Beckerath organ was installed at Saint Joseph’s Oratory in Montreal.

As the twentieth century came to a close, a significant decline in church attendance was well underway. Churches continue to close at an increasing rate. And toward the end of the last century, there was a dip of interest in playing the organ. When I was a student at Oberlin in the 1970s, there were over fifty organ majors in four bustling studios. Fifteen years later, there were fewer than ten. Several colleges and universities closed their organ departments, churches with traditionally active music programs began having trouble filling empty jobs, and for a while things were looking pretty grim for the American pipe organ.

I am carving time into rough blocks for my own convenience, but as the twenty-first century got underway, a fresh wave of brilliant young organists appeared. Stephen Tharp and Ken Cowan, now in their late forties and early fifties, led the pack forging virtuosic concert careers. They were followed in no particular order by Paul Jacobs, Isabelle Demers, Nathan Laube, Katelyn Emerson, and many others, raising the art of organ playing to unprecedented heights. Concurrently, especially following economic lows following 9/11 and the near collapse of the American economy in 2008, noticeably fewer churches embarked on expensive organ renovation or new organ projects. Many of us in the organbuilding trade wondered silently and increasingly out loud if we were heading toward the end of the pipe organ industry.

Convention

The American Institute of Organbuilders held its annual convention in Atlantic City, New Jersey, October 8–12, 2022. More than 300 members gathered in a convention hotel there to be immersed in the work of the Historic Organ Restoration Committee that is more than halfway through the herculean task of restoring the legendary Boardwalk Hall organ with seven manuals and 449 ranks. Built by Midmer-Losh, Inc., between 1929 and 1932 (Opus 5550), the Boardwalk Hall organ is the largest in the world, not by ranks (The Wanamaker Organ has more), but with 33,112 pipes. Many of the ranks have eighty-five pipes or more. The committee is about eight years into the project and anticipates completion in 2030. I will bet we will have another convention there then. (See the cover feature for this organ in the November 2020 issue.)

A convention of the AIO typically includes a lot of time riding buses to see organs throughout an area. Because of the huge attraction at the center of this convention, we had just one day of bus travel to visit three marvelous organs in the Philadelphia area: C. B. Fisk, Inc., Opus 150 (2016) at Christ Church, Episcopal, Philadelphia; Aeolian-Skinner Opus 948 (1936) at St. Mark’s Church, Episcopal, Philadelphia; and the instrument by Kegg Pipe Organ Builders (2014) at Bryn Athyn Cathedral, Bryn Athyn, Pennsylvania. These are three very different and very distinguished organs, all beautifully demonstrated, and all terrific examples of the art of American organbuilding. At the convention hotel, perhaps the only large hotel in Atlantic City that does not boast a casino, we heard lectures about the history of the Boardwalk Hall organ, the economics of refurbishing rather than replacing damaged old organ pipes, and the art of structuring a contract to define an organ project, among others. Nathan Laube, the brilliant recitalist and teacher I mentioned earlier, lectured organbuilders about his ideal of the modern organ console—his conclusion, keep it simple.

In the past, I have written in detail about the organs we heard after attending a convention. This time, I want to celebrate the trade. I have related an off-the-cuff bird’s eye view of American organbuilding over the past century to put in context what I am observing now. In addition to our work aiding the sales of vintage pipe organs and dismantling those organs to be delivered to workshops for renovation, the Organ Clearing House is privileged to work with many of our admired companies, assisting with the shipping, hoisting, assembly, and installation of their new organs. This allows us intimate exposure to the methods and practices of a variety of firms and close associations with their largest organs.

While varying styles of worship and the proliferation of digital instruments has consumed much of the market for simple pipe organs, it is clear that we are in an age of monumental new instruments. Noack, Fritts, Fisk, Schoenstein, Richards, Fowkes, Létourneau, Buzard, and Parsons, among others, have built exceptional new organs in the last five years. All of them carry forth the 500-year tradition of organbuilding, many aided by Computer Numerical Control (CNC) routers. These expensive but efficient machines use computer programs to interpret an organbuilder’s drawings to produce repetitive parts automatically, to drill windchest tables, to make toeboards, rackboards, skyracks, and countless other organ parts with precise perfection. Ten years ago, only a few shops had them, now some have two that grind along in the corner of a shop while the organbuilders are free to do the interpretive work that a machine cannot do.

A couple important firms have recently closed. After a century of work and producing more than 2,500 organs, the Reuter Organ Company in Lawrence, Kansas, stopped most operations on December 1. While they remained profitable until the end, as the senior staff reached retirement age, other administrative staff chose not to step in to continue the business. The closure of August Laukhuff GmbH, a huge and important organ supply firm in Weikersheim, Germany, is having a profound effect on American companies. Many organbuilders have long relied on Laukhuff for organ blowers, electric parts like slider motors and pull-down magnets, keyboards, polished façade pipes, action chassis, and countless other widgets essential to the trade. Other firms are working to fill in the gaps, but this remains an important loss.

The AIO has a relatively new tradition of having a special dinner for members under thirty years old. Since the conventions in 2020 and 2021 were postponed because of covid, this year’s dinner included all members under forty, and there were more than thirty in attendance. I was thrilled to realize that in a trade heavily populated by older people, more than ten percent of those attending this convention were under forty. I had wonderful conversations with many of them and was heartened by their excitement and commitment to continuing the art.

This year’s AIO Convention was particularly high-spirited with enthusiasm for our trade abounding. Nathan Bryson, convention chair and curator of the Boardwalk Hall organ, was an enthusiastic and welcoming host. His excitement for his job is evident in the attitudes of the members of the Historic Organs Restoration Committee, both staff and volunteers. My many conversations with our younger colleagues were highpoints of the week for me. I was happy to hear their enthusiasm about their work. Some newcomers to the trade expressed to me their amazement at the rich history of the organ and the complexities of building, restoring, and repairing them. A couple of the younger participants were in the process of starting new workshops, and their excitement was infectious. Many of the younger members are women, bringing lively diversity to our gathering.

Whenever I am with colleague organbuilders, I hear stories of how they got interested in the organ when they were kids, how the first years of learning piqued their interest enough to devote their lives to the trade. I love comparing notes about solving problems. I love hearing about new materials, methods, machinery, and tools that save time and money, and I love the comeradery of spending time with like-minded people.

Above all, I celebrate what seems to be a bright future for American organbuilding. Churches are investing in large expensive projects, and many of our colleague firms have years of contracted work spreading ahead of them. Perhaps most important, I believe that American organ playing is the best it has ever been. As long as there are brilliant, compelling musicians to play on the instruments we build, there will always be new organs to build. Keep working hard, my friends. ν

Notes

1. In fact, the couple singing that song winds up fleeing the suburbs to return to the city: “Back to the crush there, hurry let us rush there, back to the rat race, don’t forget your briefcase, back to the groove there, say, why don’t we move there, away from all this sweet simplicity.”

Related Content

In the Wind:

John Bishop
The Spirit of Life
The Spirit of Life by Daniel Chester French (photo credit: John Bishop)

Where it all begins

When I was growing up, my family had a summer home on Cape Cod where we grew enamored by a brilliant potter about five miles away. Scargo Hill Pottery was founded by Harry Holl, and over fifty years later his daughters still make the characteristic shaped dishes, mugs, and vases we grew to love. Harry worked with white porcelain that he accented with dark spots made by mixing the black sand from a specific nearby beach into his clay. He accented them with vibrant glazes. Our household and those of my siblings are rich with Harry Holl pieces; it is lovely to eat daily meals off such beautiful art and to have such ornaments on our walls and shelves.

From its beginning Scargo Hill Pottery has had a wonderful, almost spiritual side. There is a row of potter’s wheels in a sunlit spot with a translucent fiberglass roof and no walls, where you can stand and watch the artists create their products. I still think it is magical to watch a turned shape emerge from a lump of clay and become a useful vessel. From my earliest teenage years I have been in love with places where beautiful things were made. On many a summer evening, we piled into the car after supper to visit Harry and his troupe. The lovely outings were capped by a stop at Sea Breeze soft-serve ice cream conveniently located along the route.

§

The 150-acre summer estate of sculptor Daniel Chester French (1850–1931) is a couple miles from where we live in Stockbridge, Massachusetts. French is perhaps best known for two iconic public sculptures, The Minute Man statue in Concord, Massachusetts, near “the rude bridge that arched the flood,” and the monumental statue of a seated Abraham Lincoln in the Lincoln Memorial in Washington, D.C. He bought the property in 1896 and immediately commissioned the construction of a studio that became his principal workspace for the rest of his life. At that time there was train service from New York to Stockbridge; the Stockbridge station, long out of use, still stands just a couple miles from Chesterwood.

The studio is situated close to the house and has large glass windows providing plenty of natural light inside that feature broad views of Monument Mountain and the rest of the southern Berkshires. The principal work room is twenty-nine feet by thirty feet with twenty-six-foot-high walls allowing enough space for monumental equestrian statues. Since most of French’s work was to be installed outdoors, the design of the building included a working platform on railroad tracks with large doors that allowed him to move a massive work in progress outside so he could view it in natural light. He was so eager to work in the beautiful new space that he moved in two weeks before it was complete. The building included a reception room where he could receive potential clients and where his family had afternoon tea when the weather would not permit using the house’s grand south-facing porch.

The Minute Man was completed in 1875 for the centennial of the start of the Revolutionary War, before French acquired Chesterwood, but the Lincoln Memorial was completed in 1920. French designed Lincoln’s statue at Chesterwood, and a six-foot model is on display there. The full-scale statue was carved by the Piccirilli Brothers whose studio was on 142nd Street in the Bronx, New York. A four-foot bronze statue of a winged angel by Daniel Chester French, The Spirit of Life, stands in a portico at Saint Paul’s Episcopal Church in Stockbridge.

A visit to Chesterwood is an inspiration. It is thrilling to think of the wealthy and powerful people who traveled there to commission public art, and wonderful to imagine the brilliant and prolific artist toiling in the lovely studio in that bucolic setting, surrounded by family and friends.

§

Another iconic artist’s studio is within walking distance of our house in Stockbridge. Norman Rockwell had been living in Vermont when his wife began treatment at a prominent psychiatric hospital in Stockbridge, and Rockwell moved his family there in 1953. His first studio in this town was behind a large plate-glass window in the central storefront of Stockbridge’s Main Street, directly above the Back Room Rest, familiarly known as Alice’s Restaurant of Arlo Guthrie fame. He later built a free-standing studio with plenty of natural light on South Street. When the present building of the Norman Rockwell Museum was opened in 1993, the studio was moved to the new site where museum visitors can go inside to see Rockwell’s easels, paints, brushes, props, and tools.

Many hundreds of Norman Rockwell’s large-scale paintings were featured on the covers of The Saturday Evening Post and are inscribed in the artistic minds of millions of people around the world. I have been moved many times by sitting on the bench and playing the keys upon which the giants of organ music sat and played—Widor, Dupré, Saint-Saëns, Fauré, and so many others. It is equally moving to see the stool on which Rockwell sat while painting his beloved three-dimensional self-portrait, his iconic Rosie the Riveter, and The Runaway.

Our place in Stockbridge backs up to the cemetery where every morning I walk Farley the Goldendoodle through the cemetery, past Norman Rockwell’s grave to the adjoining Naumkeag estate, a great place for him (Farley) to be off leash for his morning constitutional. Norman is there with two of his wives, his gravestone festooned with tubes of paint, paintbrushes, and little trinkets left in tribute to his marvelous career and influence on our cultural life. Our granddaughter has been swept up by Norman-mania, being sure to visit him each time she visits us.

That Ingenious Business

In 1990 the Pennsylvania German Society published a book by our late colleague, friend, and organ builder, Raymond Brunner about the Pennsylvania German organbuilders Philip Bachman and David Tannenberg, among many others. These were some of the first organbuilders active in the United States, and a few authentic examples of their eighteenth-century American-built organs are still extant. As the organ was the most complex device built by humans at that time, the phrase “that ingenious business” evolved around that local industry. Now we are surrounded by technological marvels—no eighteenth-century organbuilder could have imagined mobile phones, flat-screen televisions, or nuclear submarines, but the pipe organ remains one of our fascinating achievements.

Among my many pleasures of working with the Organ Clearing House is visiting the workshops where pipe organs are built. We have working relationships with many of the country’s fine organbuilders as we help them with their projects, providing truck transportation, rigging and hoisting, assembly and disassembly. I have been in dozens of organ shops both here and abroad, and I always marvel at the creativity and dedication of the people in them. My first shop visits were open houses at Fisk and Noack in the 1970s when I was in high school. Organbuilder George Bozeman was an early mentor. I sang with his wife, Pat, in the choir at my home parish, and they were generous, taking me to those magical places to see organs nearing completion and ready to be dismantled and shipped. My high school organ teacher John Skelton also shared those wonders with me.

My first experience working in an organ shop was the summer of 1975, between my freshman and sophomore years at Oberlin, when I spent those months in the workshop of Bozeman-Gibson & Company. The shop was in Lowell, Massachusetts, in a building previously occupied by organbuilder Rostron Kershaw, and I spent my first day as a nascent organbuilder in the parking lot with sawhorses, façade pipes, Zip-Strip, hose, bucket, and rubber gloves. Oh, the glory of it. The parking lot was shared with a guy who transported chickens on a flatbed truck stacked high with wooden coops. I do not think he raised the chickens. I guess you would say he was trafficking in chickens, but the truck clattered in and out, and he was always happy to take the sawdust from the dust collection system to line his coops. Once when the bin was empty, he asked if we would plane some wood.

That summer, the company was working on the restoration of the wonderful 1848 George Stevens organ in the First Church of Belfast, Maine, and the installation of a new organ in the Federated Church of Castleton, Vermont. What an adventure it was for a nineteen-year-old enthusiast to spend the summer driving around New England, staying in motels, eating with a meal allowance ($1.50, $2.50, $3.50 for breakfast, lunch, dinner), and having my first hands-on experiences with organs. I returned the following summer and helped install the Bozeman-Gibson organ on Squirrel Island, an exclusive summer community off the Maine coast near Boothbay Harbor, six miles as the crow flies from our house in Newcastle.

Nearly fifty years later, I still marvel at the magic. I have a sense that it is improbable that we would be allowed, even encouraged to make something as otherworldly as a pipe organ. The variety of skills involved seems endless. An organbuilder is an architect, carpenter, woodworker, steel worker, electrician, leather worker, metallurgist, sculptor, acoustician, and musician. A comprehensive workshop houses familiar machinery like saws, drill presses, and planers, milling machines, and welders, and equipment you are not likely to see elsewhere like the cauldrons for melting soft metals, and especially the tables for casting the long sheets of metal used to make organ pipes.

François-Lamathe Dom Bédos de Celles de Salelles (1709–1779, we know him familiarly as Dom Bédos) was a Benedictine monk and organbuilder who published a monumental treatise, L’art du facteur d’orgues (The Art of Organbuilding) in 1778. Its volumes are packed with elegant engravings showing all facets of the trade including tools, workbenches, mechanical actions, wind systems, windchest layout, and clever exploded views of the interior of a complete organ. The cauldron and casting table are clearly illustrated, just like those found in modern workshops. I imagine that Dom Bédos built lovely big bellows to help tend the fires under his melting pot. Of course, today’s organbuilders do not have to stoke wood fires to melt their metal; a gas burner does the trick in a trice. Flipping through the pages of the good monk’s treatise shows how little has changed in the craft in nearly 250 years.

But how much has changed

Aristide Cavaillé-Coll (1811–1899) is revered for the tremendous legacy of pipe organs his company produced for such churches as Notre-Dame and Saint-Sulpice in Paris, but along with over 500 instruments he was honored for the invention of the circular saw blade. How we take them for granted now. I still have the table saw I bought in 1987 when I started the Bishop Organ Company, and I have ten or fifteen circular blades for it, some of which have specialty uses. Most of them have carbide steel tips on the teeth that stay sharp through miles of cuts. Think of spending a day making thousands of wood trackers, maybe ten feet long with a cross section of 1.5 by 8 millimeters. You stand at that saw all day making cut after cut. It is monotonous, but you cannot let your mind wander because you really want precise cuts, and you want to keep your fingers. (I still have all mine after forty-nine years behind the saw.)

As repetitive and precise as that task is, besides the circular saw blade we have the added luxury of a shop-wide dust collection system. The good monk had none of that. He cut those trackers by hand. My mentor John Leek taught me to make long, straight saw cuts and to plane a board flat and parallel by hand before I was free to use the machines. It was a great learning experience. I hardly ever did that again, but that helped me imagine the time, effort, and concentration it would take to make an organ full of trackers by hand. Or think of making a keyboard by hand with sixty long straight cuts. When I worked for Angerstein & Associates in Stoughton, Massachusetts, in the 1980s, I built the four keyboards for the new console of a large organ in Corpus Christi, Texas, and I remember that the lowest few naturals of the bottom keyboard were a little wider than the others. I have not noticed anything like that in any of the historic organs I have visited. I recently had a fun exchange about that with the good people of the Red River Organ Company who maintain that organ now.

I had a root canal a couple months ago—not my first choice of how to spend a morning, but I had a good laugh with the endodontist when I told her that the smell of grinding my teeth reminded me of standing at a table saw cutting ivory or cow bone for keyboards. I was impressed by the array of teeny cutting tools she used with a compressed-air motor to drill so delicately into the roots of my teeth. She spoke softly to her assisting technician, “A 14, please,” “A 12, please.” Between gulps, I asked if those were bit sizes. Yes, but of course the numbers refer to length in millimeters, not diameter.

Drill sergeant

The art of organbuilding can be defined as the art of knowing where to put the holes. Each pipe in an organ needs at least two holes, a toehole to stand in and a rackboard hole that stands it up straight. In a slider chest, there are two more holes for each pipe, one in the windchest table and one in the slider. A ten-stop, sixty-one-note slider chest has 2,440 holes. Those in the windchest, sliders, and toeboards range from about ½ inch to 1¼ inches with some larger oval holes because the holes cannot be larger than the travel distance of the slider. The rackboard holes range from about ½ inch to 3 inches or more, with the largest pipes supported by felted “scallop” racks higher up on the pipe. Dom Bédos’s windchests did not have sixty-one note compasses, but he still had to drill thousands of holes just to hold up and blow the pipes. There are usually at least two holes in each key of a keyboard, one for a balance pin, and one for a guide pin. He built an organ with five manuals, each with fifty-six notes—that is 560 holes. He used a “bit-and-brace” drill with handmade bits. What skill, precision, and plain hard work 
was involved.

I have thousands of drill bits in my workshop—twist bits, multi-spur bits, Forstner bits (guided by the outside edge rather than a center pin), countersinks, and spade bits. To turn those bits, I have a little fleet of drill motors with rechargeable batteries and the drill press I bought with the table saw.

With your own eyes

If you have not already, I hope you all get to visit an organ shop sometime. Most companies that build new organs love to host open house events when an organ is ready to be shipped. Those events typically include food and drink, displays about how certain tasks and processes are accomplished, and the added excitement of visitors from the church where the organ is going. If you are planning a trip to an area that is home to an organ company, get in touch through their website or give them a call to ask if you might visit. At least they will put you on a mailing list for the next open house. There is an old gag about sausages—you might love to eat them, but you do not want to watch them being made. Watching the artisans at work in an organ shop will inspire your love of the instrument and will inspire your musicianship. It’s nothing like sausages.

In the Wind . . .

John Bishop
Taylor & Boody workshop (photo courtesy Taylor & Boody Organbuilders)

Pipes, wind, and wood

During the 1960s and 1970s, a number of organ building firms were founded, dedicated to building mechanical-action pipe organs according to ancient principles. This proliferation has been generally called the “Tracker Revival,” among other names, but more to the point, it was a renaissance of the philosophy of building pipe organs in small workshops rather than in large factories. In the years leading up to World War II, the larger American organ building firms adopted mass-production practices and controlled expenses diligently, which diminished the artistic and musical content of the instruments.

The idea of building pipe organs by hand was revolutionary, and there was a steep learning curve for these artisans. Early in the twentieth century, most American organs used relatively high wind pressure. Four inches on a water column was common, and firms like the Skinner Organ Company routinely used pressures from four to six inches on the Great, six to eight on the Swell, and often included Solo Tubas on ten, twelve, and even twenty-five inches. Such high pressures in large organs were only made possible by the invention of the electric blower that could produce huge volumes of pressurized air. Historic European organs typically used pressures of three inches or less (remember that before about 1900 pipe organs were blown by human power), and twentieth-century American builders, starting more or less from scratch, had to learn anew how to make large organ pipes speak beautifully on low wind pressure.

A critical part of measuring wind pressure is volume. The output capability of an organ blower is measured in cubic feet per minute at a given pressure. And in a mechanical-action organ with slider windchests, the delivery of pressurized air from the blower depends on the dimensions of the windlines from blower to reservoir to windchests, of windchest tone channels, of pallet (valve) openings, toe holes sizes in both windchests and pipes, and many other minutia. Several years ago, I visited the huge Beckerath organ at the Oratory of Saint Joseph in Montreal while the people of Juget-Sinclair were at work on the renovation and was amazed to see that small paper tubing was used to provide wind for the behemoth 32′ façade pipes, demonstrating that in the 1950s, venerable European firms were also busy learning how to do great things with low wind pressure.

E. Power Biggs released his influential two-record set, The Golden Age of the Organ, featuring the organs of Arp Schnitger and the chorale preludes of Ernst Pepping in 1968. That recording was a bellwether, as important as any single document in the inception of the new age of organ building. I wore holes in those LPs as a teenager, poring over the published specifications, gobbling up Pepping’s cheerful leaping music, and forming a lifelong relationship with Bach’s transcription of Vivaldi’s Concerto in D Minor. The gorgeous tones of the 8′ Principal in the Pedal with intertwining 4′ stops playing the violin are fully in my ears as I write.

John Brombaugh established his company in 1968 in Middletown, Ohio, and gathered a group of five partners that included John Boody and George Taylor. In the following years, an absolute who’s who of the twentieth-century pipe organ worked in Brombaugh’s shop, including many who went on to form their own companies. Brombaugh was one of the first to dig hard into the study of older organs in Europe, taking thousands of measurements, trying to learn what made those instruments sound so wonderful, and bringing that information back to the workshop to convert the numbers into music.

Ten years after starting the company in Ohio, when Brombaugh was eager to move the company to Oregon, George Taylor and John Boody chose to stay and form their own company in Middletown. As part of the dissolution of the partnership, Brombaugh passed on to them a contract for a new organ of two manuals and eighteen stops for the Presbyterian Church of Coshocton, Ohio. George and John set up shop in John’s garage to build the organ. It was completed in 1979, and Harald Vogel played the dedicatory recital.

As they were finishing the organ in Coshocton, they dreamed of purchasing a school building, thinking that with high ceilings, big windows, and wood floors, such a building would make a great workshop. George’s sister was graduating from Mary Baldwin College in Staunton, Virginia. George and John drove down to attend, and a college friend of George’s suggested an old school in town that was available. During a short visit, they immediately started talking about the price and bought the building for $11,000. More than forty years later, Taylor & Boody is still building organs there.

§

John Boody and I have shared a special bond as I maintained the E. & G. G. Hook & Hastings organ (Opus 635, 1872) in the First Baptist Church in Wakefield, Massachusetts, where John grew up and where his grandfather had been pastor. (Sadly, the church and organ were destroyed by fire on October 24, 2018.) We have been friends for a long time and have shared many a meal, wiling away convivial hours, and we have collaborated a few times. I spent a cheerful ninety minutes on the phone with John on January 10, 2021, hearing his thoughts about the history of Taylor & Boody.

John expressed gratitude for the opportunities he and George had to study European organs. He talked especially about their encounter with the 1702 Schnitger organ in the Aa-Kirk in Groningen, the Netherlands, where with Lynn Edwards and Cor Edeskes they had the privilege of removing the pipes from the iconic organ for exact measuring. They measured the windlines and other components of the wind system, measured critical dimensions of the windchests, and analyzed the structure of the organ. John spoke with reverence about blowing on those ancient pipes and how the experience defined the future of their work. “That really set the pace for us. That was before we plugged in a machine.” 

After that first organ in Coshocton, Ohio, several modest contracts came their way. Arthur Carkeek, professor of organ at DePauw University, Greencastle, Indiana, advocated Taylor & Boody to build a twenty-two-stop organ for the First Christian Church in Vincennes, Indiana (Opus 4, 1981). There followed a twenty-stop organ in Cincinnati, twenty-four stops for Richmond, Virginia, and a couple of one-manual organs, before they got to Opus 9 (1985), a four-manual organ with fifty-two stops for Saint Joseph’s Chapel at the College of the Holy Cross in Worcester, Massachusetts.

Late in our conversation, I asked John how he would define the work of Taylor & Boody. “It’s that sound we made at Holy Cross where we had all those lead pipes working together. We never built a squeaky organ like other people thought Baroque organs should be; our organs have that dark, chocolate, choral sound, the core of the organ was different. I think that really grabbed people’s attention, and that has worn well. And Grace Church, New York, still has that, and Saint Thomas Church Fifth Avenue. So that has stuck with us. And I think that, for me, that’s what makes an organ an organ. It’s that Principal, choral sound.” Their first few organs were built with the memories of that Schnitger organ fresh in their minds, and the opportunity to build the large organ at Holy Cross established the identity of their work.

John and I talked generally about the work of some of our colleagues, and I made the comment, “there’s a group among us who tip their hat to Mr. Skinner every time they get out of bed.” 

Boody: “That’s good, and that’s bad. I would say we have to move ahead.” 

Bishop: “Somebody listening to what John Boody just said would answer, haven’t you been looking 300 years back ever since you first had a chisel in your hand?”

Boody: “No, exactly the opposite. We were looking to the future. We wanted to build organs that stand tall into the future, that people would love on their own merits.”

Bishop: “So how do you translate the influence of Niehoff and Schnitger into the future?”

Boody: “You have to go with the music. You have to think of all the mechanical parts and other components you make in the shop as a conduit to making music. And you have to think about how all those parts work together. We focused on the music.”

The means of Grace

The Taylor & Boody organ at Grace Church in New York (Opus 65, 2013) was both a departure and continuation in the history of their work. Wendy and I live at Broadway and East 9th Street in Manhattan (Greenwich Village), Grace Church is at Broadway and East 10th. While the organ installation was underway, I shared some grand evenings with John and his co-workers, both in neighborhood restaurants and in our apartment. They were working on a complex instrument (tracker action in three separate cases with a remote console, and an “action tunnel” under the floor of the chancel), and those evenings were bright and fun.

That landmark organ with four manuals and seventy-six stops combines the Schnitger heritage of those marvelous “choral” choruses of lead Principals with the expressive range of the best Skinner organs. Acoustic scientist Dana Kirkegaard stipulated the construction of the expression boxes: two-inch-thick poplar lined on both sides with three-quarter-inch plywood, making a massive and dense enclosure, and shutters everywhere, even on the back of the box, shutters with an unusual range of motion, the whole providing an astonishing expressive effect. All that, plus a sophisticated solid-state combination action, sensitive mechanical action, and a few solo voices on really high pressure, combine to make an exciting instrument capable of countless effects. But wait, there’s more! Standing in the rear gallery, more than a hundred feet from the organ, are the lowest twelve notes of the 32′ Open Wood Diapason, all that remains of Skinner Organ Company Opus 707, built for Grace Church in 1928. Those twelve pipes were restored with a discreet wind supply and wired as an extension to the new 16′ Double Open Diapason of the Taylor & Boody organ, a fitting bottom to the grand new organ and testament to the musical history of the church.

Wind

As John Boody and I talked about the Grace Church organ, he spoke especially of the wind system. Superficially, we think of the pipe organ as a keyboard instrument. In fact, it is a wind instrument operated by keyboards. The organ at Grace Church has more than a dozen 16′ stops and twenty 8′ flue stops. Making an organ like that go is all about moving wind. John spoke proudly of the fellow in their shop primarily responsible for the wind system with large capacity wood wind ducts with curves for turns rather than right angles, those gentle turns moving the wind in different directions without creating eddies that can disturb the speech of the pipes. 

Multiple parallel-rise reservoirs ensure that there’s plenty of volume available to make those big sounds and that the wind is regulated effectively so there is no whiplash from a sudden shift from ffff to ppp. There is a lifetime of thought and experimentation in the wind system of each Taylor & Boody organ.

Pipes

There are a number of companies in the United States and Europe that make organ pipes to the specifications of the organ builders who order them. Pipe making is a complicated art that involves considerable specialized equipment for melting, blending, casting, planing, hammering, cutting, and soldering metal. It takes a lot of investment and effort for a small company to develop those abilities, but Taylor & Boody committed early to the idea that they should make their pipes. There is a room in their workshop with the cauldron for melting and mixing alloys and a ten-foot-long casting table. Molten metal is ladled and poured into a wood hod that runs on rails along the sides of the casting table. When the hod is full, two workers walk it swiftly down the table, leaving a thin pool of shiny molten metal. I have witnessed this process there, marveling at the moment a few seconds after the sheet is cast when the metal flashes over from liquid to solid.

When the sheet has cooled, it is rolled up like a carpet so it can be safely transported to the next steps in the process. John talked about the importance of the precision of making pipes. If a pipe is not neatly made, the voicer has to try to correct the pipe maker’s mistakes. John’s daughter-in-law B. J. Regi makes all the smaller pipes. John said, “she makes exquisite pipes. And you know, that’s the deal. If you go to start voicing an organ and everything’s lined up well, the mouths are beautiful, and the windways are pristine, you can make good sound right away.” Robbie Lawson heads the pipe shop, and B. J. helps him with the larger pipes. 

Wood

John Boody attended the forestry school at the University of Maine at Orono (he holds a Bachelor of Arts degree in vocal performance) and has loved and respected wood throughout his career. Taylor & Boody has a sawmill where they cut all the lumber used in their organs. After it is sawn into boards, the wood is dried in a kiln made from a retired refrigerated (and therefore insulated) semi-trailer. The lumber is stacked neatly in piles, separated by the organ. In 2009, Wendy and I visited Thomas Jefferson’s home at Monticello, and we spent a night with the Boodys. (We were treated to fresh eggs from John’s chickens for breakfast.) John showed us the huge oak logs from which the matching organ cases of the Grace Church organ would be made.

The sawmill provides the company with the most desirable wood, especially quarter-sawn white oak. Black walnut has beautiful grain patterns and rich color. It is very expensive to purchase from a hardwood supplier, and it is typically used only for decorative casework and furniture. But since walnut trees are plentiful in their area and they are messy to have in your yard, neighbors often cut down walnut trees and offer the logs to the T&B sawmill. This allows them to use the stable and beautiful wood to make action parts and wood organ pipes. Carefully milled, beautiful lumber is a hallmark of Taylor & Boody organs.

John’s affinity with wood is so widely respected that he has recently started writing a regular column for the journal of the International Society of Organbuilders called “The Wood Guy,” in which he answers colleagues’ specific questions and writes about the wonders of wood, that most natural of materials.

And the hope of glory

Eighty organs in forty years. Some are small continuo organs. Some are larger one-manual organs. Many are two-manual organs with twenty or thirty stops. There are a bunch with three manuals, and a couple of four-manual doozies. As the company produced all those organs, they also produced a clan. John has retired from the workshop, though he still runs the sawmill, the “light-duty” job for the older guy, and George is preparing to retire. John’s son Erik is running the company, and his daughter-in-law B. J. and son-in-law Aaron Reichert are both part of the workshop.

John is a prolific gardener. Looking at his Facebook page during the summer, you might think they were going to make zucchinis into organs. There is a swirl of grandchildren about. I recently saw a photo of a wee lass pushing a broom in the sawmill. It’s been a lifetime since those twenty-something partners were digging into that Schnitger organ in Groningen, understanding what the old master had to offer, and converting that experience into a creative career.

Halfway through our conversation, the name of a mutual friend and colleague came up, and John’s gregarious personality shone through. “He’s a dear man. And you think of our whole trade, we have great people. I love to go to APOBA meetings, I love to go to the AIO. Right down to the little one-man-shop guys, there are some great people out there.” John Boody and George Taylor have been faithful members of that band of great people. Their organs have influenced countless musicians around the world, and they reflect and amplify the harmonies of the workplace they founded in the schoolhouse on the hill.

Photo caption: Taylor & Boody workshop, Christmas 2020 (photo courtesy Taylor & Boody Organbuilders)

In the Wind: Getting on the road again after Covid

John Bishop
Boardwalk Hall main console keyboards
Boardwalk Hall main console keyboards

“Just can’t wait to get on the road again.”1

For over fourteen months during the extraordinary time of Covid, Wendy and I stayed at our house in Maine, leaving our apartment in virus-rich New York City vacant. Until late in 2020, Lincoln County where we live in Maine was counting fewer than twenty new cases each week, and we figured we would stay there until vaccinated. Like so many people around the country, we altered our working lives using Zoom and FaceTime instead of meeting in person. We set up our offices as “Zoom Rooms,” sometimes wearing “go to office” tops over jeans or shorts.

I received my first vaccination shot on my sixty-fifth birthday in mid-March. Once I was on the schedule, I started planning a trip, and I hit the road sixteen days after my second shot. I visited three organ building workshops, a half-dozen organs that were coming on the market, a couple iconic organs (one can never see enough of them), and a church where my colleagues are helping install an important new organ. I drove south on a western route through Virginia and Tennessee to Birmingham, across to Atlanta, and north on an eastern route home through North Carolina and Virginia to meet Wendy for a few days on the Jersey Shore. It was my re-immersion in the craft I have been working in for more than forty-five years, and I came home refreshed and newly inspired.

Variety is the spice of life.

Pipe organs come in all sizes, shapes, and colors. We have organs that are large and small, electric and mechanical, freestanding in cases and enclosed in chambers. We have organs based on ancient European concepts and models, and organs that are purely American, and my trip spanned the far reaches of the organ world. I visited the workshops of Noack Organ Co. (Georgetown, Massachusetts), Taylor & Boody Organ Builders (Staunton, Virginia), and Richards, Fowkes & Co. (Ooltewah, Tennessee), each of which works with a small staff of dedicated artisans building hand-crafted organs in free-standing hardwood cases. Noack is currently working on an organ with sixty stops, and I was lucky to see it being loaded on a truck at the workshop followed by the beginning of its installation at the Catholic Cathedral of Saint Paul in Birmingham, Alabama. Taylor & Boody’s current project is a thirty-eight-stop job for Wheaton College in Illinois, and Richards, Fowkes & Co. is working on a thirty-one-stop organ for Saint Andrew’s Episcopal Church in Ann Arbor, Michigan.2 Besides a tour and rich conversations in their workshop, Bruce Fowkes and Ralph Richards took me to see the spectacular four-manual organ by John Brombaugh at Southern Adventist University in Collegedale, Tennessee. I am heartened that during this uncertain time, these three outstanding firms are all building substantial instruments at the same time. You can see details about each organ on the builders’ websites.

These three builders are known for building tiny organs as well as instruments with sixty or more stops. Continuo or practice organs with three or four stops are the hummingbirds of pipe organs, and modest instruments with fewer than twenty stops are little gems with gorgeous, intimate voices and carefully balanced choruses, but the big bird of my trip was the behemoth all-American organ in Boardwalk Hall in Atlantic City, New Jersey, an organ with single divisions that include more than thirty stops. (See the cover feature of the November 2020 issue of The Diapason.)

In the May 2021 issue of The Diapason, pages 12–13, I wrote about the efforts of curator Nathan Bryson and his staff of assistants and volunteers to protect the organ during the recent demolition by implosion of the adjacent Trump Hotel and Casino, so the organ was fresh on my mind when I started planning my trip, and I invited myself for a visit. Nathan was the consummate host for my day in the largest organ in the world.

The organs at Boardwalk Hall and the Wanamaker Store (now Macy’s) have each been considered the largest in the world. Now that I have visited both with their curators as my guides, I will take the plunge and explain how an organ earns such a title. At the moment, the Boardwalk Hall Organ is about 53% playable, so the Wanamaker Organ can safely claim to be the largest fully playable organ in the world. The Historic Organ Restoration Committee that oversees the organ in Boardwalk Hall has ambitious plans to bring the organ to fully functional condition. Stay tuned. I will report it when it happens.

The Wanamaker Organ has 464 ranks while Boardwalk Hall has a mere 449, a difference of fifteen ranks, the size of a modest organ, so it wins in the category of most ranks. The Wanamaker organ has 75 independent pedal ranks with 32 pipes (29 notes fewer than manual ranks), while many of the ranks in the Boardwalk Hall Organ have up to 85 notes, accounting for extensive unification and making use of the extended lower three keyboards which have 85, 85, and 75 notes, giving the organ a total of 33,112 pipes compared to the impressive 28,750 pipes in the Wanamaker Organ. That’s a difference of 4,362 pipes, or the equivalent of a seventy-rank organ!

An 85-note rank of pipes allows a continuous scale from low CC of 8′ to high c′′′′′′ of 2′, or as in the case of several ranks in Atlantic City, from low CCCC of 32′ to high c′′′′ of 8′. Unbelievably, there is a 64′ Dulzian Diaphone with 85 notes that goes all the way to the top of 16′. Scrolling down the endless stoplist, I count one 64′ rank (85 notes), eight 32′ ranks, and sixty 16′ ranks. A count like that makes a big organ. You can count for yourself. There are comprehensive lists of ranks, stops, console layout, and pistons and controls at www.boardwalkorgans.org. It would be difficult to calculate accurately, but it is my gut feeling that the Boardwalk Hall Organ weighs a lot more than the Wanamaker Organ.

Vulgar or beautiful?

I have had a number of encounters with the Wanamaker Organ over the past twenty years, both in intimate, personal, and comprehensive visits, and in swashbuckling public performances. This was my fourth visit to Boardwalk Hall, but the first time I heard the organ.3 I was aware of both organs when I was growing up, long before either had any meaningful restoration, but as I was in the thrall of the “Tracker Organ Revival,” dutifully learning early fingerings at Oberlin, I was not creative or open-minded enough to make space for them in my musical comprehension. I assumed that they existed to take part in the biggest-loudest-fastest competitions that lurk throughout our society. How could something with more than four hundred ranks be anything more than the pipe organ equivalent of a freight train? Artistic content? Musical sensitivity? Phooey. I was wrong.

I was fortunate to have experience renovating larger electro-pneumatic organs early in my career, and when I became curator of the organs at Trinity Church Copley Square and The First Church of Christ, Scientist (The Mother Church), both in Boston, I was immersed in the grandeur of super-sized organs. The Aeolian-Skinner organ at The Mother Church is huge (237 ranks and 13,500 pipes), but less than half the size of those in Boardwalk Hall or the Wanamaker Store. While the organ at Trinity Church (actually two instruments, Chancel and Gallery, playable from one console) was smaller in number of ranks, it was an important part of my understanding of large organs because of the weekly recital series there. Each Friday, I heard a different organist play the instrument. Some were bewildered, bamboozled, even defeated by its complexity, but those organists who could make it sing taught me how a large and varied organ with divisions in four separate locations could combine to produce expressive sweeps, from thundering fortissimos to shimmering echoes that melted away into the frescoed walls.

If a finely crafted organ with mechanical action brings the intimacy of chamber music to the fingers of the organist, the large romantic organ allows the musician to paint majestic landscapes. And the mega-monumental symphonic organ allows expression ranges unheard of otherwise. What do you do with an eighty-rank string division? Paint pictures.

In the arena

When I first arrived at Boardwalk Hall, Nathan “fired up” the organ using files made by Peter Richard Conte, the Grand Court Organist of the Wanamaker Organ, along with several other creative players, and stored in the playback system. Peter is unusual among organists because of his affinity for these exceptional organs. While most of us are used to registering a chorale prelude with a cornet for the solo line and a few soft flutes and a Subbass for accompaniment, Peter is a sonic wizard with thousands of stop tabs and hundreds of other controls that allow him to command the dozens of divisions scattered about in the vast room. Sometimes he throws on a big row of stop tablets as if he was playing a glissando on the keyboard, but more usually, he programs pistons with intricate combinations using stops by the hundreds.

Boardwalk Hall is 456 feet long and 310 feet wide with a barrel-vaulted ceiling that peaks at 137 feet. Its seating capacity is over 15,000, and it is regularly used for rodeos with bull-riding competitions (they truck in enough dirt to simulate a prairie), indoor auto racing, ice hockey, basketball, soccer, and even college football. It was the site of the first indoor helicopter flight, and it is home to the Miss America Pageant. It was surreal to stand alone on the empty floor of the semi-lit hall listening to the organ do its thing with the help of Peter’s bytes. The two main organ chambers are separated in space by the hundred-foot-wide stage. The chamber lights were on, and great swaths of expression shutters were in full view, swishing and fluttering like sensuous thirty-foot eyelashes. This was not “All Swells to Swell.” The many sets of shutters were moving in contrary motion, each responding to the rises and falls of individual voices in the complex arrangements. Waves of sound ebbed and flowed like the surf on the sandy beach on the other side of the iconic boardwalk, cascades of notes morphed into fanfares, melodies were “soloed out” as if by a platoon of trombones or by four dozen violinists playing pianissimo in unison. This is the very essence of the symphonic organ, its dazzling array of controls allowing the single musician to emulate the actual symphony orchestra.

Sweeping a beach

The Aeolian-Skinner at The Mother Church taught me what is involved in caring for a large organ. “Touching up the reeds” can take all day—there are forty-one of them. But that organ lives in a building with perfect climate control. When you have more than 450 ranks in a building that is also home to rodeos and auto racing, you have a hefty tuning responsibility. Curator Nathan Bryson manages a team of professionals and volunteers who are methodically moving through the organ rebuilding blowers, releathering windchests, refurbishing organ pipes, while maintaining the organ for daily recitals and many special events.

The Boardwalk Hall Organ was built by Midmer-Losh of Merrick, Long Island, New York, during the Great Depression at a cost of over $500,000 and was completed in December of 1932. It is housed in eight chambers: Left Stage, Right Stage, Left Forward, Right Forward, Left Center, Right Center, Left Ceiling, and Right Ceiling. You can see the layout in a photo accompanying this column in the May 2021 issue. Getting a handle on which stops and which divisions are located in which chamber is the first challenge of learning one’s way around the vast instrument. The two Stage Chambers comprise what I perceived to be the main organ. They are huge and jammed with some of the largest organ stops in the world. There are stops on wind pressure of 100 inches on a water column, an absolute hurricane of air.

When the organ blowers are turned on and the instrument fills with wind, windchests expand visibly, as if the doctor told you to “take a deep breath.” The fifteen-foot-long walls of the pressurized room that houses the organ’s main electro-pneumatic switching equipment move so dramatically that I squinted, wondering why the thing does not burst. During renovation, several of the windchests on 100-inch pressure were replaced using more robust engineering, informed by the difficulty of building a wooden vessel to contain such high pressure.

Tuning those gargantuan ranks is a three-person job, one at the console, one in the middle of the hall where it is possible to hear pitches and beats, and the third (with industrial hearing protection and audio headphones) manipulating the pipes. You could try using a starting pistol to signal “next,” but you wouldn’t be able to hear it.

Beyond the endless work of restoring, renovating, tuning, and maintaining this organ, perhaps the most difficult and important work has been reintroducing the city and state governments to the ongoing stewardship of the instrument. A vast auditorium with such an unmusical array of uses seems an unlikely home for a pipe organ, and the people who have been working with and on the organ have been effective ambassadors, sharing the unique qualities of the largest organ in the world. If you would like to help, visit that website and look for the “Donate Now” button.

Look to the future.

After fourteen months at home, it was a joy to be back on the road. My thanks to Didier Grassin of the Noack Organ Company, Ralph Richards, Bruce Fowkes, John Boody, and Nathan Bryson for sharing their work and philosophies with me, and above all, for sharing the joy and pleasure of “knocking around about pipe organs.” Three cheers for all the wonderful work underway on organs both old and new. If this is a taste of the new normal, I am ready to ride.

Notes

1. Willie Nelson.

2. By coincidence, one of Wendy’s cousins is on the organ committee at Saint Andrew’s.

3. In 2010, the Organ Clearing House built the “Blower Room” set for the Saint Bartholomew funeral scene in the spy-thriller movie, Salt, starring Angelina Jolie and directed by Philip Noyce. All the sets including the barge, the presidential bunker, and the CIA offices were constructed in retired Grumman aircraft hangars in Bethpage, New Jersey, where the Lunar Excursion Module was built. Our set included a couple big Spencer blowers that we had in stock and a huge electro-pneumatic switching machine borrowed from the “other” organ at Boardwalk Hall (a four-manual Kimball in the adjacent theater). I transported the machine in both directions in rental trucks. The set decorator thought the rig was complicated enough that I should be present for filming. I stood around while Ms. Jolie jumped through walls dozens of times, until I heard over the PA system, “Organ guy to the crypt, organ guy to the crypt.” The leading lady greeted me with hand outstretched, “Hi, I’m Angie.” I described that she should shoot the regulating chain to make the bellows go haywire and cause the mass cipher that would disrupt the funeral. (We provided the hardware, and special effects provided the action.) She said, “I can’t shoot that.” I replied, “I’ve seen you shoot.” I watched the single take on Mr. Noyce’s monitor and had the honor of shouting “Action!” at his signal, my twelve seconds in Hollywood, another chapter from the life of an itinerant organ guy. Curious? You can stream it on Netflix. And the nice thing about building a movie set? They don’t require a warranty.

Photo caption: Seven keyboards and 1,235 stop tablets, as big as they get. Midmer-Losh organ, Boardwalk Hall, Atlantic City, New Jersey. (Manuals I and II have 85 notes, Manual III has 75 notes, and manuals IV, V, VI, and VII have the usual 61.) (photo credit: John Bishop)

In the Wind . . .

John Bishop
Alan Laufman

In memory of Alan Laufman: the birth of the Organ Clearing House

I have written often about the dynamic renaissance that dominated the history of the pipe organ in the United States in the second half of the twentieth century. In the 1950s and 1960s, E. Power Biggs toured Europe, bringing home recordings of distinguished historic instruments, catching the ears of the listening public. A large, four-manual tracker organ by Rudolf von Beckerath was installed at Trinity Lutheran Church in Cleveland, Ohio, in 1957, the same year that Biggs arranged for the installation of the iconic Flentrop organ in the museum formerly known as the Busch-Reisinger at Harvard University in Cambridge, Massachusetts. American organbuilders and organists developed a renewed interest in organs with mechanical key actions and low wind pressures because of the clarity of tone and sensitivity of touch. Many new firms devoted to building tracker-action instruments were established, and with that came renewed interest in nineteenth-century American organs with their mechanical action and low-pressure voicing.

The change of direction affected electro-pneumatic instruments as well. In June 1956, G. Donald Harrison was hurrying to finish the new Aeolian-Skinner organ at Saint Thomas Church on Fifth Avenue in New York City, a substantial “American Classic” rebuild of the original Skinner organ built in 1912. The national convention of the American Guild of Organists would be held in the city later that month, and Pierre Cochereau, organist of the Cathedral of Notre Dame in Paris, France, was scheduled to play the new organ for the convention. There was both a heat wave and a taxi strike in New York, and after working into the evening on June 14, Harrison had to walk home to his apartment on Third Avenue. After dinner, while watching Victor Borge on television, G. Donald Harrison died of a massive heart attack. He was sixty-seven years old.

By coincidence, John Scott, the brilliant British organist whose tenure as organist at Saint Thomas ended with his untimely death in 2015, was born on June 18, 1956, four days after the death of G. Donald Harrison.

On June 27, less than two weeks after Harrison’s death, with the AGO convention in full swing, a group of ten people interested in historic American organs gathered in the choir room of Saint Bartholomew’s Church on Park Avenue to discuss the possibility of forming an organization for like-minded people. Present were Horace Douglas, Dorothy Ballinger, Robert Clawson, Albert F. Robinson, Barbara J. Owen, Donald Paterson, Kenneth F. Simmons, Charlene E. Simmons, Homer D. Blanchard, and Randall E. Wagner. They discussed the possibility of maintaining a list of endangered instruments and publishing a newsletter for the exchange of information of interest to members, and the Organ Historical Society was born. Barbara Owen and Randy Wagner are the two survivors of that group.*

One of the many reasons why historic organs were being threatened came from an act of Congress. The Federal Aid Highway Act passed in 1956 led to the creation of the Dwight D. Eisenhower National System of Interstate and Defense Highways (the Interstate Highway System). As commander of Allied Forces in Europe during World War II, Eisenhower had been impressed by the importance of the German autobahn system in the mobilization of the military, and building highways was a priority of his presidency. It is difficult to imagine the United States without interstate highways, but their construction caused significant collateral damage as rights of way were carved through American cities causing the destruction of countless buildings, including churches and their pipe organs.

Barbara Owen was the first keeper of the endangered organ list. She solicited information from colleagues around the country and published the list in the mimeographed (remember that smell?) newsletter of the foundling OHS. Within a couple years, the newsletter was replaced by the society’s professionally printed journal, The Tracker, and Alan Laufman became interested in the movement to preserve historic organs. Around 1960, Alan assumed responsibility for the list of endangered organs; in 1961, he petitioned the board of the OHS to allow him to spin “The List” into an independent company, and by 1962, Alan Laufman was listed as director of the Organ Clearing House on the masthead of The Tracker.*

Alan Miller Laufman (1935–2000)

Alan was born in Arlington, Massachusetts. He taught English at Saint Thomas Choir School and later at the Thomas More School in Harrisville, New Hampshire. He was interested in the organ as a child, an interest that was surely nurtured during his time at Saint Thomas. In the early days of the Organ Clearing House, Alan was able to turn the list into action, finding homes for organs slated for destruction. He organized deals between churches that would cover moving costs and solicited thousands of hours of volunteer labor from organbuilders, organists, and enthusiasts. Parishioners provided lodging and meals, and organs were moved by the dozen at low cost.

Decades before the introduction of cell phones, Alan would commandeer the phone of the church where he was working, calling all over the country to arrange the next deal. Gradually, the operation became professional. Organs were delivered to organbuilders’ workshops for restoration. A permanent, paid crew was established, many of whom joined the company because they happened to live near where a project was underway. Alan would approach a group of kids, asking if they wanted to “earn some money over the weekend.” Amory Atkins, who first worked with Alan in 1978, and Joshua Wood, who joined in 1986, became Alan’s business partners and are officers in the company today.

Dozens, then hundreds of wonderful organs of all sizes by such builders as Hook, Hook & Hastings, Hutchings, Stevens, Erben, Jardine, Barckhoff, and Appleton were given “second wind” through Alan’s efforts. Organs facing demolition typically were moved without purchase price; so, from the beginning, the OCH charged a finder’s fee to the recipient of an instrument rather than receiving a sales commission.

Alan maintained the list of available organs in large, three-ring binders, typically one page per organ. He called the binders “The Family Album.” There would be a snapshot, a stoplist, and a brief description of the organ, its location, and situation. In the late 1980s and through the 1990s, I was running the Bishop Organ Company in the Boston area, and I was able to sell several organs to my clients through OCH with Alan’s help. I recall the lengthy phone calls as I described the buildings where an organ might be installed. Alan was often casually munching on something as he rifled through those binders. I would hear the click as he snapped the rings open and the creak of his desk chair as he swiveled toward the fax machine. Through the miracle of then-modern technology, I would receive pages describing a few organs Alan thought might be good candidates. The snapshots were taped to the three-hole page and showed up on the faxes as black blobs. “Laufman and his black blobs” was a common snicker between organbuilders. Looking back, it seems primitive, but it sure was effective, and I know many other organ guys listened to the munching and creaking as they received their black blobs.

A few examples

In 1981, the Metropolitan Museum of Art in New York City acquired an organ built in 1830 by Thomas Appleton through the Organ Clearing House. Sacred Heart Catholic Church in Plains, Pennsylvania (near Wilkes-Barre), was closing, and the OCH removed the organ and delivered it to the workshop of Mann & Trupiano for restoration. It was installed in the balcony in the grand acoustic of the marble Equestrian Gallery of the Pierpont Morgan Wing where it joined the museum’s iconic collection of musical instruments. The organ has more recently been removed for cleaning and renovation and returned to its lofty location concurrent with the renovation of the gallery. The oldest organ in the United States was built by Snetzler of London in 1762—it is located in the Congregational Church of South Dennis, Massachusetts. There are a few British-built instruments in the Boston area dating from around 1800, and there is a two-manual organ built in 1800 by David Tannenberg at Old Salem, North Carolina. With those, the Appleton organ at the “Met” is one of the earliest extant American-built organs and perhaps the second oldest with two manuals.

One of the grandest OCH relocation projects involved the 1871 organ with three manuals and fifty-four stops built by E. & G. G. Hook of Boston for Saint Alphonsus Catholic Church on West Broadway in New York City, near the entrance to the Holland Tunnel. The church was to be demolished to make space for a parking garage. There is a luxury apartment complex at that address today. This massive organ is over fifty feet tall, including the seven-foot-tall angels perched high atop the pedal towers. Ithaca, New York, area organbuilder Culver “Cullie” Mowers told of transporting those angels from New York to New Haven in his “Beech Wagon.” Driving through a toll booth on Interstate 95, the toll-taker took a look and asked, “Where are you taking them?” Alan gathered a large crew to remove the organ from its original home and created a consortium of organbuilders to renovate the instrument and install it at Saint Mary’s Catholic Church in New Haven, Connecticut. The project started in 1981, the same year as the relocation of the Appleton organ, and was completed in 1982.

Transitions

In July 2000, the Organ Historical Society held its convention in Boston at the Park Plaza Hotel. Though he was suffering from cancer, Alan addressed the convention, traveling across town from the hospital to speak about the history of the Organ Clearing House. During that lecture, he estimated that in nearly forty years he had been involved directly or indirectly in the relocation of more than two thousand pipe organs. Later that week, Amory, Joshua, and I met with Alan in his hospital room to discuss my succeeding Alan as director of the OCH, allowing the company to continue supporting their families and to continue the work that Alan had started and nurtured. We all shook hands, and Amory made the quip that has defined my life since, “Okay John, you kill ’em, and we’ll skin ’em.”

As Alan’s condition worsened, hospice care was set up for him in the front room of Amory’s house in Cambridge, Massachusetts, where friends and family, colleagues and associates traveled from far afield to visit Alan. The number of people who passed through that house during the fall of 2000 is tribute to Alan’s influence on the world of the pipe organ and the wide reach of his professionalism and friendships. Amory, his wife Virginia, and children Ty and Sydney gave Alan a profound gift by making the farewell procession possible. He passed away during the evening of November 30, 2000.

Alan’s memorial service was held at the Church of the Immaculate Conception, the Jesuit Urban Center in Boston, home of the monumental four-manual 1902 Hook & Hastings organ, created by the rebuilding of E. & G. G. Hook’s Opus 322 (1863). Thomas Murray played the organ, and I’ll not forget the experience of singing ST. CLEMENT (“The day Thou gavest, Lord, is ended . . .”) with the vast, musically sophisticated congregation.

Alan lived in Harrisville, New Hampshire, for many years, a community he served as a selectman. He brought a one-manual Hook organ to Saint Denis Catholic Church, which he played for services when he was at home. His ashes were interred in Saint Denis Cemetery, enclosed in a box made by a colleague organbuilder from an old bass Bourdon pipe.

Among his many accomplishments, Alan was especially proud of the twenty-seven issues of The Organ Handbook he produced annually as editor from 1972 until 1999. Those publications were the program guides for conventions of the Organ Historical Society, and along with schedules and recital programs, they included organ specifications and historical essays about each instrument visited. Alan spent months in each convention city, visiting each instrument and researching the history of the organs and their buildings. Each volume was scholarly, comprehensive, and impeccably accurate. Complete sets of these vital books documenting hundreds of organs are to be seen in the offices of organists and organbuilders all across the country.*

Organbuilder David Wallace of Gorham, Maine, first met Alan at the 1963 OHS convention in Portland, Maine, and has been associated with the Kotzschmar Organ (Austin Organ Company, 1912, five manuals, ninety-six ranks) in Portland’s City Hall since he was a child. David tells of a conversation with Alan at the 1983 OHS/AGO convention in Worcester, Massachusetts, that has helped guide his career. Alan was asking David about the efforts to preserve the Kotzschmar Organ that was by then in poor condition having fallen victim to municipal budget cuts a few years earlier. A passerby cut in, “Why don’t they get rid of that piece of junk and get something decent in there.” After a stunned silence, Alan replied, “Because it is a noteworthy instrument on a global basis that significantly merits preservation.” Now David was stunned, “. . . here was the sacrosanct nineteenth-century organ hero Alan Laufman advocating for an over-the-hill twentieth-century orchestral organ.” Alan went on to say that each individual organ should be looked at with an eye for what it has to offer, not only its past but also what it can carry to the future. Recently, the organ has been thoroughly renovated and is in terrific condition well into its second century.

And the rest is history.

Since Alan’s death, the Organ Clearing House has continued the work of maintaining information about available organs, placing instruments in appropriate new homes. The pace has slowed to an average of about fifteen sales a year, and the emphasis has changed from the ubiquitous ten-stop Hook & Hastings organ to three and four-manual electro-pneumatic instruments. With organists’ renewed interest in orchestral transcriptions and complex Romantic music, the organs most likely to sell are those with lots of solo voices and fundamental tone, at least two expressive divisions (preferably more), and state-of-the-art consoles with the latest of whizbang solid-state gadgets allowing hundreds of registration changes at the speed of light.

The company has evolved to offer new services. With the experience of dismantling hundreds (thousands?) of pipe organs, we are specialists in hoisting and rigging delicate and heavy components inside ornate buildings chock full of precious artworks, and we are frequently engaged to assist organbuilders in the installation of new organs, erecting scaffold towers with hoisting equipment that rolls along I-beams on trolleys, and engaging truck transportation and overseas shipments. We have sent organs to Madagascar, Bolivia, New Zealand, China, Australia, Great Britain, and Germany. We cover organs for protection during building renovation, and we provide consultation services, advising owners of organs about their care, improvement, and replacement.

We prepare empty organ chambers for the installation of an organ, building level floors, repairing leaking gallery windows, plastering and painting, and working with HVAC, plumbing, electrical, and fire protection contractors to ensure a safe home for the organ. And we have enhanced, renovated, and installed organs under our own name. We are especially proud of the three-manual 1915 Casavant organ we moved from Maine to the Upper East Side of New York City, transforming it from a country organ to a city organ, and from a “downstairs church organ” to an “upstairs church organ.”

I have been director of the Organ Clearing House for twenty years, and I’m the new guy. Amory Atkins, Joshua Wood, Terence Atkin, and I all worked with and for Alan, and his influence is very much alive in our work. I was invited in 2008 to visit Madagascar by the country’s Federal President, Marc Ravalomanana, who was also an official of the national Protestant Church, to study the possibility of bringing American organs to Malagash churches. My “cold call” came from Madagascar’s Ambassador to the United Nations, Zina Andrianarivelo. Zina took me to the Presidential Palace in Antananarivo, the capitol city. Sitting in an upholstered chair waiting for my meeting with the president, I thought, “Alan would have loved this.”

* Thanks to the Organ Historical Society Library and Archives and archivist Bynum Petty for supplying and confirming this historical information.

Photo: Alan Laufman in 1979 at a Stevens organ, Blue Hill, Maine (photo credit: William T. Van Pelt)

In the Wind . . .

John Bishop
Fisk shop

Making things

Before we moved to New York City, Wendy and I lived in the Charlestown Navy Yard in Boston. Our building had been an electrical warehouse for the Navy Yard, which actively built ships from 1801 until 1975. It is a building that once had forklifts racing around inside, so the ceilings were nice and high. Our living room windows looked across Boston Harbor to the Coast Guard base, the Custom House, and into the heart of Boston, and we had “cocktail chairs” in front of the sixth-floor windows where for ten years of evenings we watched the Wednesday night sailboat races, foolish non-seamen in overpowered speed boats, and the constant flow of commercial shipping including the mammoth Liquid Natural Gas tankers whose captains looked us in the eye from their towering bridges.

The Navy Yard still functions formally as a military base as it is home to the USS Constitution, the Navy’s oldest commissioned warship. One of the oldest buildings in the Charlestown Navy Yard is the Ropewalk, built of heavy granite blocks and completed in 1838, where most of the rope used by the United States Navy was made until it closed in 1970. Imagine the floor plan of a building designed expressly for making rope, over 1,300 feet long and 45 feet wide. That is more than twice the length of the Cathedral of Saint John the Divine in New York City. One of my walking routes included the length of the building that is almost exactly a quarter mile, and I wondered what sort of machinery was used for all that twisting and winding. Take a look at this video to see an antique ropewalk in operation: https://www.youtube.com/watch?v=2M5mo2I2c0Q.

The Maine Maritime Museum is on the site of the Percy & Small Shipyard in Phippsburg, Maine, where dozens of wooden sailing ships as long as 444 feet were built through the nineteenth century. The museum is adjacent to the Bath Iron Works, famous for having launched a new destroyer every twenty-five days during World War II with Rosie the Riveter riveting a river of rivets. Now, the Bath Iron Works is known for producing new Zumwalt Class destroyers.1 The museum includes a diorama of the J. T. Donnell Ropewalk in Bath, Maine, which adjoined Percy & Small and provided the shipyard with rope. When you are building six-masted schooners you need lots of rope, and the ropewalk was a wooden structure some 1,200 feet long with a stationary steam engine at one end to power the equipment. A legend by the diorama shares a quote from The Bath Times in 1883:

John D. Smith of this city, a ropemaker at the J. T. Donnell ropemaking factory, has done a large amount of walking in his life. He is sixty-four years old and has worked at ropemaking for forty-five years working as a handspinner, in which time he has spun 69,940,666 fathoms [six feet] of thread, walking ten miles a day to do this, which in the forty-five years of spinning would aggregate the enormous distance of 140,400 miles [six day weeks for forty-five years]. Of this, one-half the distance has been accomplished walking backwards . . ., the equivalent of backing a distance nearly equal to around the world three times.

Reminds me of the quip about Ginger Rogers, who did everything Fred Astaire did, but backwards in high heels. (Mr. Smith probably didn’t wear high heels.)

Color my world with a spring in my step.

Children have grown up watching Sesame Street since 1969. I was thirteen, and I had just landed my first paying job as a church organist, so I was above “strings and sealing wax,” but fifteen years later the show was a staple for my sons. As a lifelong machine geek, I loved the segments about how things are made, all of which are easy to find online. There is a humdinger about making crayons accompanied by a brilliant musical tone poem. My favorite is “Peanut Butter,” the jazzy flapper-style song written and performed by Joe Raposo that accompanies a tour through a peanut butter factory featuring smiling workers in what look like Krispy Kreme hats pushing the important looking buttons to run the machines. I especially like the shot of a broad stream of peanut butter oozing out of a press and into the pipes that lead to the jars as Raposo sings, “he keeps it pumpin’ through the pipeline like a peanut-butter-pumper should.” What great teaching.

Among the many factories I have toured are a potato chip factory (no free samples but a gift shop at the end), a major brewery (free samples), and an auto assembly plant (no free samples). When I was working for John Leek in Oberlin in the early 1980s, we were building an organ for Saint Alban’s Episcopal Church in Annandale, Virginia, and we planned to make the sliders in the style of Flentrop, double sliders of Masonite, the holes connected with little leather tubes, with hundreds of springs between them to press the two sliders against chest table and toeboard.

No hardware store could have supplied the thousands of identical fine coil compression springs we would need, and we found the Timms Spring Company in Elyria, Ohio, perfectly situated to supply the several large car makers in the area. The company had around twenty employees, most of whom were tool-and-die makers, and the factory was full of machines. Timms would receive an order from a car maker for a million specialized springs, and a machine would be set up to make them that would then run on its own for a week or two gobbling up coils of wire and filling bins with springs.

We brought a sample (probably borrowed from a Flentrop organ we serviced) and met Bill Timms, the third generation of the spring-making family. Bill gave us a fascinating tour around the factory explaining the purpose of each spring being made and gave us lots of free samples. We watched as a toolmaker set up a simple jig to copy our spring by hand and returned a week later to pick up our order.

Organ shops

Visiting a pipe organ workshop is a special treat, educational and eye-popping for both the layperson and the organbuilder. I have visited dozens of shops across the United States, in Great Britain, and in Europe, and while I like to think I know a lot about the building and history of organs, I always learn something fresh. It is fun to compare how different workshops approach common tasks like building windchests and reservoirs, racking pipes, or making wind connections. Different firms have particular products or processes they have developed of which they are particularly proud, different firms have thoughtfully designed console layouts that distinguish them from others, and different firms specialize in different types of windchest actions.

The organbuilding firm of Harrison & Harrison in Durham in Great Britain moved into a new well-equipped building in 1996, where one can pass from one department to another witnessing the deep skills of a venerable firm at work. Immediately upon entering the building, one sees displayed in an elegant frame a cast gold medallion and a letter from Queen Elizabeth II dated November 20, 1997: 

Prince Philip and I are delighted and deeply impressed with the marvelous work of restoration of the fire damaged area of Windsor Castle. Being anxious to show our appreciation of the skill and dedication, which you and others have devoted to it, we have this special medallion struck to mark the completion of the restoration and it comes with our grateful thanks. [Signed] Elizabeth R

The organ involved in the Windsor Castle restoration is a new instrument of seven ranks in the “Private Chapel” built in 1997. Harrison & Harrison has produced a vast list of important and well-known organs including those at King’s College, Cambridge, Durham, Ely, and Exeter cathedrals, Royal Festival Hall, Westminster Abbey, Winchester Cathedral, and Saint George’s Chapel at Windsor Castle. We have all seen several of those organs on television. I especially like the thought that the marvelous organ in Westminster Abbey was built for the coronation of George VI in 1936—imagine the feelings of nervousness, expectation, and pride those organbuilders must have felt. When I visited that workshop in 2016, the organ from King’s College was in the shop for renovation. I got a kick out of noticing the pipe crate labeled “Solo Tuba,” the stentorian tenor melody under a certain verse-six descant ringing in my ears. My visit to Durham included a tour of the H&H cathedral organ with operations manager Jeremy Maritz, setting the standard that one Double Open Wood Diapason is not enough. There’s one on each side of the choir, one of which goes to 32′.

The workshop of Taylor & Boody in Staunton, Virginia, is housed in an old public school building with huge windows and high ceilings, a spacious, airy, and well-lighted place to work. Since the firm was founded in 1979, they have built nearly ninety mechanical-action organs, developing a great reputation for excellent workmanship. Most of their instruments show the influence of the North European Baroque, with tonal schemes that allow lots of versatility. They ensure their own supply of high-quality wood by harvesting carefully chosen trees, cutting them into lumber in their sawmill, and drying them in the adjacent kiln. It is a kick to walk around the yard among stacks of lumber designated for particular opus numbers. When Wendy and I visited there in 2009, we stayed in the apartment above the sawmill and saw the huge oak logs destined to become the wonderful innovative organ for Grace Church in New York City. We have a fond memory of John Boody showing us his “free-ranging” moveable chicken coop and giving us fresh eggs for our breakfast.

Taylor & Boody is one of a number of firms that casts pipe metal to their own specifications. Watching the casting box being pushed down the long table leaving a shining pool of molten metal behind is something special to watch, especially the magic moment a few seconds later when the elixir turns into solid metal. The transformation from liquid to solid is instantly apparent. It seems like alchemy. The idea that freshly cast metal and those huge oak logs would soon be a pipe organ epitomizes the craft we celebrate.

Schoenstein & Company in Benicia, California (the gateway to Napa Valley), mirrors the dedication to quality at Taylor & Boody, building organs in a style worlds apart. They are widely respected for the sophisticated tonal structures with versatile orchestral voices, double expressions, and powerful solo voices, and their elegant consoles are superbly appointed with accessories unique to them. One look at an expression shoe and you know it is a Schoenstein organ. Schoenstein purchased their building in 2004, leaving the 1928 workshop in downtown San Francisco. They have since raised the ceiling of one room to forty-two feet, creating an erecting space, and added a wing for pipe shop, voicing room, and archives. The attention to detail is unparalleled—the company logo is stenciled on the propane tanks of the forklift. Jack Bethards and his skilled staff are working with a clear vision, strongly influenced by the fabled companies of the early twentieth century. The firm has just completed a grand organ with four manuals and seventy stops, including a 32′ metal façade, for the new Basilica of Mary, Queen of the Universe in Orlando, Florida.

Glatter-Götz in Pfullendorf, Germany, is housed in a new facility built for them shortly after the famous Walt Disney Concert Hall organ was completed. When I was there in the fall of 2019, vast fields of sunflowers were in bloom as I drove to the little village. There is a one-story façade facing the street, effectively concealing the two-and-a-half story rear of the building. There is a huge slanted roof covered with solar panels allowing second floor offices at one end of the building and lofty open areas with plenty of space for erecting organs and handling long lumber. You enter at the end of the building where the lunchroom is to the left, the voicing room to the right, a corridor ahead to the workshops, and a long stairway to the suite of offices. All the workspaces have lots of big windows, plenty of clean bench space, storage areas for lumber, and fasteners, leather, and organ parts are neatly organized. There were two organs being assembled when I visited, one for Marietta, Georgia, and another older instrument being renovated for a music school in rural Russia. The next-door neighbor is a farm implement dealer, so a parade of tractors runs back and forth outside.

Paul Fritts & Company occupies an attractive architect-designed (craftsman style?) building in Tacoma, Washington. I visited there in April 2019 with my colleague Amory Atkins (it was Amory’s birthday) while we were installing an organ at the University of Washington. Organs for the First Lutheran Church of Lorain, Ohio, and the Chapel of Hillsdale College in Hillsdale, Michigan, were standing in the shop when we visited. The Lorain organ was complete and ready for shipment. I was especially impressed by their CNC (computer numerical control) router. It is housed in a separate building to separate the considerable noise from the rest of the workshop. It is as big as a bus and capable of drilling entire windchest tables with dozens of different hole sizes, milling the many sizes of wood reed boots, and mitering wood windlines, all by programmed computer control. The machine chooses and inserts bits as necessary and calmly progresses from one task to another while the organbuilders work on other tasks in the workshop across the way. We had a birthday dinner with Paul and college pals Bruce and Shari Shull in Tacoma, then drove back to our hotel in Seattle in a wicked rain squall, crowned by a complete double rainbow. Happy Birthday!

C. B. Fisk, Inc., moved into a new purpose-built facility in 1979. That building has been expanded significantly since, with tall erecting space added, and a large wing containing several department workshops. The first organ to be built and assembled in the new shop was Opus 68, a three-manual, twenty-seven-stop instrument for the Southwick Music Complex of the University of Vermont. Close to ninety new organs have been built in that building, which, like others I have described, is superbly equipped and spacious enough for nearly thirty people to be at work with all the tools and supplies they need.

Charles Fisk founded the eponymous company in 1961 in an old ropewalk building in Gloucester, Massachusetts. C. B. Fisk “lifer” Bob Cornell, who has been with the firm for fifty years, remembers that the ropewalk was actually built for making nets for the city’s fleet of fishing trawlers. (Remember George Clooney and Mark Wahlberg in The Perfect Storm.) There was a twenty-foot-high room at one end where organs could be erected, and an attached structure over 120-feet long where the nets had been made and the various workspaces for the organ company were placed. Bob remembered poison ivy growing through openings in the walls, and that the long floor slanted away from the tall building as the land sank into the nearby bog causing window frames to become trapezoidal. About ten people worked in that shop. The landmark organs for Kings Chapel in Boston (1963) and Harvard Memorial Church (1967) were built in the ropewalk.

What groundbreaking work happened in that shop as the innovative and Socratic Charlie Fisk, with a loyal group of disciples, dug into the history of organbuilding and developed the signature style that has been so influential. The company has now built over 150 organs in distinguished venues all over the world. Those fledgling organbuilders may not have walked 140,000 miles, but they sure changed the content of the industry.

Each of these companies has a well-developed website with photo galleries, opus lists, and workshop tours. Happy visiting. And buy good organs.

Notes

1. Just to show that the Navy can have a sense of humor, the first launch of the futuristic evil-looking Zumwalt class ships was the USS Enterprise commanded by James Kirk. 

Photo:

The Fisk Ropewalk, moving day to the new shop, Charles Fisk loading the van (photo credit: Robert Cornell)

In the Wind: Humble π, Archimedes' Mental Model and Fritz Noack

John Bishop
Fritz Noack
Fritz Noack

Humble π

Archimedes (c. 287–c. 212 BC) lived in the ancient Greek capital of Syracuse, located on what is now Sicily. He was one of the great mathematicians, engineers, inventors, and astronomers of his time, even of all time. He imagined and recorded the origins of calculus and pioneered the concept of applying mathematics to physical motion, the applications of a screw, and the multiplication of pulleys and levers to allow the lifting of heavy objects. He is the source of the quote, “Give me a lever long enough and a place to stand, and I can move the earth.”

Among his many achievements was the realization of π (spelled pi), the mathematical constant that defines the properties of a circle and all shapes that are related to circles. ∏ is an irrational number—it cannot be expressed as an exact number. We round it off at 22/7 or 3.14, so we actually arrive at approximations of the exact number. It is a little like figuring a third of a dollar: $0.33 + $0.33 + $0.34 = $1.00. Because it cannot be expressed in an exact way, we use the symbol π to indicate the exact number. Around 600 AD, Chinese mathematicians calculated π to seven digits after the decimal, and with modern computing power it has been calculated to trillions of digits. It is infinite. Let’s stick with 3.14 to save time. ∏ is known as Archimedes’ Constant.

RELATED: Read "The Life of Pi" here

In the June 2021 issue of The Diapason, pages 12–13, I wrote about an encounter I had with a twenty-something kid in a local lumber yard as I was buying material to make a circular baffle to keep squirrels off one of our birdfeeders. I was planning to fasten aluminum flashing to the circumference of the circle, so I rattled off thirty inches (the diameter of my circle) times π to get a little under eight feet, so the ten-foot roll of flashing would be enough. The kid did not know about π (didn’t know about π?) so I gave him a primer. ∏ times the diameter of a circle (πd) is its circumference. ∏ times the radius squared (πr2) is its area. I suggested that we could compare the area of a twelve-inch pizza with that of a sixteen-inch pizza, and using the calculator in my phone, I rattled off the two areas, and he was impressed by how much difference that four inches made to the size of the pizza.

But when I recreated the exercise while writing the June column, I mixed up the formulas and used πd for the area rather than πr2 (circumference rather than area) and triumphantly reported the difference between a twelve- and a sixteen-inch pie as about twelve and a half square inches. Had I used the correct formula, I would have found that the sixteen-inch pie is larger by about 88 square inches, or 44 two-inch bites, over six times more than my published result.

Two readers caught my mistake and wrote to me and to the editors of The Diapason. Nicholas Bullat is a retired organist and harpsichordist and former chair of the organ department and head of graduate studies at Chicago’s American Conservatory who also worked as a corporate and securities counsel. Nicholas carried the pizza story a step further using prices from a local pizzeria. Their $12.50 twelve-inch pie costs about $0.11 per square inch while the $18.00 sixteen-inch pie comes out at $0.09 per square inch. If I am right estimating a bite at two square inches, then those 44 extra $0.18 bites seem quite a bargain.

Glenn Gabanski, a retired high school math teacher in the Chicago area, also caught my mix up of pizza recipes, adding that the sixteen-inch pizza is 1.78 times larger than the twelve-inch. I will never buy a small pizza again. If the large one does not get finished, we will have leftovers for breakfast.

Achimedes’ mental model

Glenn found another significant error in what I wrote for the June 2021 issue. Remembering long-ago visits to Boston’s Museum of Science, I wrote:

When I was a kid on school field trips, I was interested in an exhibit at the Museum of Science in Boston that showed a perfect sphere and a perfect cone on a scale. Each shape had the same radius, and radius and height were equal. They balanced. My old-guy memory of my young-guy thinking had me wondering, “Who figured that out.” You can prove it by using π to calculate the volume of each shape.

The last time I was in that wonderful museum would actually have been when my sons were teenagers, more than twenty years ago, and I have since learned that the exhibit was installed around 1980, long after my field-trip days. I should hesitate to guess because I am apparently often wrong. Glenn pointed out that my memory of the cone and sphere could not be correct because the cone would have to be four times the radius of the sphere for the masses to be equal when the radii were equal. The volume of a sphere is V = 4/3 πr3. If r = 1, V = 4/3 π. The volume of a cone is V = πr2h/3. If r = 1, then V = π/3, ¼ the volume of the sphere. Using 1 for the radius made it easy to understand.

My foggy senior-citizen memory needed a boost, so I called the Museum of Science and was connected to Alana Parkes, an exhibit developer. When I described the volume-balancing exhibit she knew exactly what I meant and responded with a photograph reproduced here showing the balance beam with a cone and sphere on one side, and a cylinder on the other. If the radius of the sphere and the radii of the base of the cone and the cylinder are all equal, the volume of the cone plus the sphere equals that of the cylinder. I shared that with Glenn, and he whipped out his pencil and responded with a sketch, also reproduced here, a lovely piece of teaching with the reduction of the equations explaining the properties of the drawing. I am sorry the fellow in the lumber yard did not have Glenn as a teacher in high school.

I had engaging conversations with Nicholas and Glenn on Zoom, and I am grateful to them for reading carefully enough to catch my errors and respond. When I told Glenn that he was one of two who had written, he responded, “Only two?” And many thanks to Alana Parkes of the Museum of Science in Boston for her cheerful willingness to correct my faulty memory and provide this fine photograph.

Glenn mentioned that he had always been troubled by the moment at the end of The Wizard of Oz, when the Wizard confers a “ThD” degree on the Scarecrow, a Doctor of Thinkology, he explains. The Scarecrow instantly responds by misquoting the Pythagorean theorem. Humbug. (You can watch that scene here: https://www.youtube.com/watch?v=DxrlcLktcxU.) And remember that bird feeder baffle? The thirty-inch plywood circle with less than eight feet of flashing around it? It didn’t work. The squirrels “took the hill” within an hour.

A life’s work: remembering Fritz Noack

Forty hours a week times fifty weeks is 2,000 hours in a year. Maybe you took three weeks of vacation, but I bet you worked more than eight hours a lot of those days. At that rate, there are 100,000 working hours in a fifty-year career. Did you use them all wisely and productively? Professional accomplishments add up over a long career. I started writing this column in April of 2004 so this is the 208th issue at an average of 2,500 words, well over half a million words. When you visit, I will show you my pitchfork, um, I mean tuning fork. In twenty years, a church organist playing one service a week for fifty weeks each year plays at least 3,000 hymns, 1,000 preludes, 1,000 postludes, 1,000 anthems, and 1,000 dramatic lead-ups to the Doxology. Did you do that without repeats? Oh, right, you played a certain “Toccata” on twenty Easters.

If your life’s work was a billion bits on a hard drive or 250,000 emails, you cannot stand them in a field and review them, but when you walk into the workshop of the Noack Organ Company you see photos of 160 pipe organs on the wall leading up the stairs to the office. Fritz Noack founded the company in 1960 in Lawrence, Massachusetts, moved it to a larger workshop in Andover, Massachusetts, in 1965, and in 1970 purchased an old school building on Main Street in Georgetown, Massachusetts. A tall erecting room with a voicing balcony was added, and the Noack team has been producing marvelous organs there for over fifty years.

Fritz Noack passed away on June 2 at the age of 86. He leaves a vast legacy that stretches from the infancy of the “Tracker Revival,” the renaissance of American organ building, to the present day. He apprenticed with Rudolf von Beckerath, and worked for Klaus Becker, Ahrend & Brunzema, and Charles Fisk (at the Andover Organ Company) before starting his own firm.1 The nascent company was home to a host of apprentices who have had important and influential careers in the business including John Brombaugh and John Boody.

An American renaissance

As a teenager in the Boston area in the 1970s, I was swept up in the excitement of that renaissance. My mentors took me to concerts, workshop open houses, and parties, and I soaked it all in. I remember a moment in the Würsthaus in Harvard Square, a long gone but much-beloved haunt for the organ community. We had come from a recital played by Fenner Douglass on the Fisk organ at Harvard Memorial Church and were gathered around a large round table. It must have been around 1973 or 1974, because I was thinking about applying to Oberlin and was excited to meet Fenner for the first time. Someone at the table noticed that there were nine people present who were organists for churches that had Fisk organs. The guest list would have included John Ferris, Yuko Hayashi, John Skelton, and Daniel Pinkham. (If anyone reading was there that night, please be in touch and fill in my erstwhile memory.) That has stood out for me as an indication of just how much was going on in the organ world there and then. C. B. Fisk, Inc., was founded in 1961, and barely a dozen years later there were nine Fisk organs in the Boston area alone.

There is quite a list of adventurous instrument builders who opened workshops in the 1960s and jump-started that renaissance, including Fisk and Noack, Karl Wilhelm, Hellmuth Wolff, and John Brombaugh. Fritz Noack’s career was the longest of all these. It is hard to think of any field of endeavor that was affected by a renaissance as profound as the pipe organ. Comparing the organs built by these firms in the 1960s with those built at the same time by the long established companies like Möller, Reuter, and Aeolian-Skinner is like comparing chalk with cheese. The combination of research and imagination that went into that was dazzling. People were traveling to Europe to study ancient instruments supported by Fulbright scholarships and Ford Foundation grants and experimenting with their findings after returning to their workshops.

During the 1980s and 1990s, I maintained over a hundred organs in New England, and I was familiar with many of the earliest organs of that renaissance. Some of them could truly be described as experimental organs, prototypes that combined newly formed interpretations of ancient techniques with the practicality of creating a complex machine with an experimental budget, and some could be honestly described as not very good. There was a lot of plywood, contrasting with the opulent hardwood European cases. There were primitive electric stop actions using automotive windshield-wiper motors to move the sliders. The noise of those motors was a noticeable part of the experience of hearing the Fisk organ at Harvard.

A common flaw of organs of that time was “wind-sickness.” American builders were not used to working with low wind pressures, and there was much to do to develop the ability to deliver sufficient volume of air pressure to larger bass pipes. Lifting a pipe of a 32′ rank in a Skinner organ and playing the note will blow off your topknot. Visiting the famous five-manual Beckerath organ at the Oratory of Saint Joseph in Montreal while Juget-Sinclair was renovating it, I was struck by the two-inch paper tubing used to supply wind to the massive 32′ façade pipes. That one-inch radius squared times π equals 3.14 square inches. The largest Skinner toehole is at least five inches in diameter. The two-and-a-half-inch radius squared times π is 19.625 square inches. I will take the large pizza, thanks.

In a nutshell

The Andover Organ Company and Otto Hoffman of Texas were among the earliest American builders of modern tracker-action organs. Hoffman was building organs in the late 1940s, but the activity centered around Boston was the biggest concentration of the start of the renaissance. Four significant Beckerath organs were installed in Montreal in the 1950s including the five-manual behemoth at the Oratory. That inspired the leadership of Casavant to quickly branch out into mechanical-action instruments to establish a foothold in their own country.

In 1964, Casavant installed a three-manual tracker organ with forty-six ranks (many of them 2′ and smaller) at Saint Andrew’s Episcopal Church in Wellesley, Massachusetts, Opus 2791, and Karl Wilhelm and Hellmuth Wolff were among the Casavant employees present. Shortly thereafter, both established their own firms. (That organ has subsequently been moved through the Organ Clearing House to Holyoke, Massachusetts, and replaced with a new two-manual instrument by Juget-Sinclair.) That same year, Fisk built the thirty-eight-stop organ (Opus 44) for King’s Chapel in Boston where Daniel Pinkham was the organist, the first modern American three-manual tracker organ. The first modern American four-manual tracker was built by Fisk in 1967 for Harvard, Fisk’s forty-sixth organ in the company’s first eight years.

Fritz Noack’s first large organ was the three-manual instrument for Trinity Lutheran Church in Worcester, Massachusetts, built in 1969, the fortieth Noack organ in the company’s first nine years. Those two small workshops produced close to a hundred organs in a decade. By 1980 when both firms were twenty years old, they had produced a combined 170 organs including the ninety-seven-rank Fisk at House of Hope Presbyterian Church in Saint Paul, Minnesota. That’s what I mean when I mention the tremendous amount of activity in Boston in the 1960s and 1970s.

Today, sixty years into the renaissance, we have a raft of firms to choose from, many of which are led by people who started in the Noack shop. It is fun to trace the genealogy of the American pipe organ business to understand how the histories of the companies intertwine.

I know others will write Fritz Noack’s biography, telling of his personal history and family. I am happy to point out the significance of his diligence and imagination, the extraordinary number of excellent instruments he produced in a workshop that I am guessing never had more than twelve people working at a time, and how I valued him as a friend and mentor as I made my way through life. I maintained perhaps ten of his organs, including the big one in Worcester (there was a swell Mexican restaurant nearby), and we had lots of close encounters when problems arose that we solved together.

He had a positive outlook, charming smile, and a twinkle in his eye. He carried the wisdom of the ages, always remained an avid learner, and helped raise the art of organ building in America for all of us. He gave the art a further great gift, ensuring his company’s future by bringing Didier Grassin into the firm to continue its work. With Fritz’s support and encouragement, Didier has added his style of design and leadership and has produced two monumental organs in his first years after Fritz’s retirement, Opus 162 in Washington, D.C., and Opus 164 in Birmingham, Alabama.

I salute Fritz Noack for all he has added to the lives of organists around the world. I am grateful for his friendship and wish him Godspeed as he assumes his new job, tuning harps in the great beyond.

Notes

1. noackorgan.com/history.

Current Issue