Skip to main content

In the Wind. . .

John Bishop
An out building

Doo-dads

In the late 1970s and early 1980s I lived in a four-bedroom house in the rolling farmland outside Oberlin, Ohio. I had just graduated from Oberlin, was working for the local organbuilder John Leek, and was director of music for a big Presbyterian Church in Cleveland. The house was part of an eighty-acre farm, and like most similar properties in the area, the fields were rented by a farmer who worked a total of about 1,500 acres in the neighborhood. It was typical to rotate corn and soybeans year by year, because their effect on the soil is complementary. Around the house, there were three or four outbuildings including a large barn that I remember as being in better condition than the house. The house had a natural gas well, pretty unusual for many people, but common there in those days. After all, now we know it as fracking country.

Our neighbors Tony and Claire-Marie across the street had a similar property with a neat house, an enormous barn, and fields that were rented by a farmer. They were friends of the Leeks from church and lovely, considerate people. Tony ran an excavating business and used his barn to store and maintain his huge pieces of heavy equipment. Occasionally, Tony invited me to help him with a repair project. I do not think he really needed my help but knew that I would be interested, so I would spend a Saturday with him doing things like changing the wheel bearings on his Caterpillar D-9 bulldozer.

That machine was over twenty-five feet long, fifteen-feet wide, and weighed over 100,000 pounds. You don’t just jack it up, pull out a tire iron, loosen the lug nuts, and pull the wheel off. He had a homemade hydraulic jack made from parts taken from old construction equipment. The hydraulic pump came off an excavator and was driven by the power-take-off of a farm tractor. The lug nuts were three inches in diameter (his sets of socket and open-end wrenches went up to five inches), and he used a backhoe and a hoisting strap to lift the wheel off the machine. I was a young apprentice, the proud owner of a new set of Marples™ chisels (I still have them and use them regularly), and I had never seen such an ingenious caper. Because of my career in organbuilding, I have had a lifelong fascination with tools and, as Tony realized, I would always be interested in seeing something new to do with tools.

Watching Tony make that heavy work look easy by using the right tools influenced my work with organs. It was not long after that time that I was helping to install a large three-manual tracker organ in a high organ loft. We centered the floor frame properly, but when the case started getting tall, we could see that it was not going to center under the peak of the vaulted ceiling. We used hydraulics to move the entire organ with case, windchests, reservoirs, keyboards, and actions, budging it to the right about an inch-and-a-half. (Don’t tell anyone.)

When we were done with the wheel bearings, we started the D-9 (the starter motor is a forty-horsepower diesel motor), climbed on board, he backed it out of the barn, and let me drive it around in a circle in the big gravel apron. I had another experience running heavy equipment when the farmer who rented our fields was harvesting corn, and I got to run the combine for a couple rows. Glad I didn’t have to parallel park it.

A man and his tools

As more than forty years have passed since my heavy-equipment-operator days, I have downsized to a small private workshop which is the three-car garage attached to our house. I have a table saw, drill press, and band saw left from my big shop days, and shelves and drawers full of countless hand tools and odds-and-ends. I have a terrific woodworker’s workbench, the maple job with built in vises and bench dogs, and I have a sturdy well-lit, double-length workbench where I do most of my work. Wendy and I are thinking about enlarging the laundry room (sometimes called the mud room) that shares a wall with my shop, a wall covered with shelves. We were standing there tossing ideas around, and she commented that I might just get rid of all that stuff. Quickly and defensively, I pointed out the house jacks.

Why does an organbuilder need house jacks? When releathering a reservoir, you get to the step where the pairs of ribs are glued to the top frame and the whole assembly is glued to the body. You cut and glue on the eight leather or rubber cloth belts and let the glue set overnight. In the morning, you have to open the reservoir by lifting the top, as if it were filling with wind. All that freshly set glue and nice stiff material has to be convinced that this is a good idea, and the reservoir is on your workbench, so you are lifting it to chest level. That is a perfect use for a small house jack. I prop the jack up on blocks and pump the hydraulic handle. You can also use a house jack lying sideways to budge an organ an inch or two to the right.

But more to the point, remember when our daughter Meg wanted to convert the little shed out back to a pottery studio and we realized that one of the posts had rotted? Remember how her husband Yorgos and I jacked up the corner of the shed and sunk a new post into the ground? That’s why I need a house jack.

What is that next to the house jack? An ultrasonic cleaner, a little tub with a metal basket and a dial on the front. I use it to clean brass parts like reed tongues and shallots, cabinet hinges, escutcheons (look it up), and the fancy little brass doo-dads that organbuilders like to use for trim pieces, specialized controls, and the like. Parson’s Sudsy Ammonia™ is a great solvent. Fill up the little tub, fill the basket with your parts, and Bob’s your uncle. Oh, and anytime you have metal jewelry that needs cleaning . . . .

There is a big stainless-steel double boiler, the thing you ladle soup from in a cafeteria line. It’s on the shelf next to the glue pot. Hide glue comes in dry flakes or crystals. You mix it with water and heat it in the glue pot. You keep adding more water or more glue as you work to keep the consistency the way you want it. You can also put cloves of garlic in a cheesecloth bag and let it soak in the hot glue—it’s supposed to keep the glue from getting moldy, and it makes it smell a little better. When you are working with that glue, you need to have a hot, wet rag nearby to clean off excess. I can fill the double boiler and use the thermostat to keep the water just exactly as hot as I can stand putting my hands in, so I always have a good hot, wet rag. Oh, and when we have a cookout, I can clean it up and serve chowder from it.

There is a beat-up old steam iron. For the same reason I use hot water to clean up while gluing, applying heat is a big help when ungluing something. Crank up that old iron and heat up the rubber-cloth strips on an old reservoir, and voilà, off it comes, smelling like burned rubber. You can put heavy paper between the iron and the rubber to keep it from sticking, but it is hard to avoid gumming up the iron with melted rubber, so when it cools, I hold the iron on my belt sander to clean it off. This maximizes the awful smells you can extract from old rubber cloth. You should not take this iron into the house and use it on white linen. There is a household benefit, however. When it finally stops working, I will steal the iron from the bedroom closet and buy a new one for pressing clothes.

A popular meme says that you only need two tools, WD-40™ and Duck Tape™. If it’s supposed to move but doesn’t, use WD-40™. If it isn’t supposed to move but does, use Duct Tape™. As a professional organbuilder, I find that pretty sophomoric. But Wendy wanted to know why I need so many spray bottles. WD-40™ is great stuff, and it smells better than burned rubber. But it is oily, so you might want to use silicone for some applications. That is what I used on the sliding doors in the living room the other day. If you have WD-40™, why do you need Marvel Mystery Oil™? Simple. I love the pepperminty smell of it.

Goof Off™ comes in spray bottles, aerosol cans, and squeeze bottles, different dispensers for different situations. It is a terrific solvent for Duck Tape™ residue, or any kind of adhesive. The last time I used it on a service call, I was removing old chewing gum from under the keyboards of a distinguished organ. C’mon, people. And that is what I used to remove that nasty tar from the fender of the car. Works on stubborn windshield bugs, too.

3M 77 Spray Adhesive™ is terrific for gluing felt and leather together to make valves or for covering pallets. Spray that stuff on both surfaces, and according to the instructions on the can, “make bond while adhesive is aggressively tacky.” The can bears the warning,

Extremely flammable. Vapors may cause flash fire. Vapors may cause eye, skin, nose, and throat irritation and may affect the central nervous system causing dizziness, headaches, and nausea. Intentional misuse by deliberately concentrating and inhaling the contents may be harmful or fatal.

At least the valves do not come unglued. When Wendy finished that beautiful woven tapestry and wondered about fixing it to a piece of fabric for framing, that’s what I used. I feel fine.

My two favorite general cleaning agents are Murphy’s Oil Soap™ and Simple Green™. Both are biodegradable, and both are really effective. Both can be used full strength or diluted in water. Murphy’s is terrific for cleaning old woodwork, Simple Green™ cleans just about anything. I have two spray bottles for each, one diluted by 50%, the other full strength. You can also pour a bit in a bucket of water. And they both smell great. And there is some of each under the kitchen sink.

There must be thirty heavy plastic cases. Get rid of half of them?

• A set of dado blades I use to make the table saw cut wider. I used them to make that bookshelf.

• A propane torch that is good for light metal work. That is how I bent that piece of iron to hang the birdfeeder on the deck.

• A tap and die set that cuts threads on metal wire or rods (outies) or inside holes (innies) from one-eighth to one-half, in coarse and fine threads.

• A set of ratchet socket wrenches, both English and metric, with quarter-inch, three-eighths, and half-inch drives with extensions. The last time I used that, I was tightening all the hardware on your loom because you said it had gotten wobbly.

• Many sets of drill bits.

* One goes from one-eighth to half-inch, graduated by sixty-fourths.

* One has about a hundred bits graduated by the numbers and letters of the American Wire Gauge (AWG).

• Say you are using bronze wire that’s .064′′ as an axle in tracker keyboard action parts. You want the wire to be tight in the hole in the part that moves, and barely loose in the mounting hole. Use the .059′′ bit (#53) for the tight hole, and the .067′′ bit (#51) for the loose hole.

* One is metric from two to twenty millimeters, graduated by tenths.

* One is Forstner bits from a quarter to two inches, graduated by eighths, especially useful because they drill flat-bottomed holes, and since they are not guided by a central pin, you can drill overlapping holes.

* One is “airplane” bits from one-eighth to three-quarters, graduated in eighths, especially useful every few years because they are eighteen-inches long. I don’t need them very often, but when I do, nothing else will work.

* One is spade bits from three-eighth to two-inches, best for making very sloppy holes in soft materials, and for spraining your wrist. I do not use those very often.

* Okay, okay. I have two of the AWG sets, and two of the sixty-fourths sets. There are a few bits missing from each, and one of the drawers over there has replacements bits for every size.

• Digital calipers that read in fractions or thousandths of an inch, or hundredths of a millimeter. That is how I know that piece of bronze wire was .064′′.

• Another big set of socket wrenches that does not include metric sizes. That is the one we carry on the boat. I forgot to put it on board this summer.

• Caddies with assorted screw sizes that I bring to installation sites, so I never have just the size I am looking for.

• You get idea. The next time, I will write about why there are eight toolboxes full of tools. Sometimes they are all in the car at once.

That huge rolling steel cabinet with drawers that looks like it belongs in a gas station? In my previous shop, all my hand tools hung on purpose-made racks. There is not enough wall space for that here, so I bought this. In the drawers, from top to bottom:

• hinged tools like pliers and wire cutters. I used this big Channel Lock™ wrench last week to fix the drain for the outdoor shower;

• open-end wrenches;

• measuring tools like squares, scribes, miter gauges, calipers, micrometers, folding rulers, steel rulers;

• cutting tools like dovetail saws, Exact™ knives and blades, scissors, rotary knives and blades (for cutting leather and felt), small carving tools, razor blades, and the three beautiful leather knives that John Leek brought me from Holland in 1976;

• screwdrivers;

• that set of Marples™ chisels;

• pneumatic accessories like blow guns, detachable couplings, and assorted valves for inflating things. That is how I blew up the soccer ball. And remember when friends from New York were worried about their tire pressure? There is the gauge and valve;

• staple and pop rivet guns, staples and pop rivets;

• arch punches for cutting round pieces of leather and felt, or for cutting round holes in leather and felt. My set goes from one-eighth to three-inches;

• rotary bits for routers, cutting plugs, deburring holes;

• multi-spur bits—the big dangerous looking ones for drilling the holes in rackboards, dozens of them from a half-inch to three inches.

That cabinet serves me well and is big enough for the available space, but I admit to having tool-chest-envy when I walk through the big stores and see the jobs as big as a bus that have charging stations for power tools and mobile phones, refrigerators, and mirrors. What a great idea. You can tell which mechanic has a mirror in his toolbox because his hair is always combed.

It is easy enough to explain all these tools and supplies, especially when I can argue their domestic usefulness. How does anyone get by without an ultrasonic cleaner? But I also have boxes by the dozen with cryptic markings. “Schlicker Console Parts” is full of the little toggles that set stops on pistons, salvaged when I installed a solid-state combination action in a Schlicker console. Anyone needs some, I’ve got them. “Austin Coils” are the “electro” part of the Austin electro-pneumatic note motors. Anyone needs some, I’ve got them. “Skinner Toggle Springs,” “Misc. Peterson,” “Large Slide Tuners,” “Spare Ivories,” “Reed Organ Reeds,” anyone needs some, I’ve got them.

It’s not just an organ shop.

There is a cabinet full of flowerpots and gardening supplies and tools. There is a cabinet full of stockpots and lobster pots, overflow from the kitchen. There is a bag of life jackets, ready for winter storage. There are a half-dozen boxes full of spare parts for a sailboat, an outboard motor, a couple anchors, and lots of nautical line. You never know when you’re going to need a piece of line. Or an air horn. Or Schlicker combination parts. It would be aggressively tacky to think that I would get rid of them.

Related Content

In the Wind: What Your Organ Service Technician Works With

John Bishop
Hot pot, glue pots, ultrasonic cleaner
Hot pot, glue pots, ultrasonic cleaner (photo credit: John Bishop)

String too short to save

After my freshman year at Oberlin Conservatory of Music, I spent the summer working with Bozeman-Gibson & Company in Lowell, Massachusetts. It was 1975, and on my first day working in an organ shop, I was set up in the parking lot with sawhorses, a set of painted façade pipes, a can of Zip-Strip®, and a hose. If that wasn’t enough to send me running, I guess I was hooked. They were working on the restoration of an 1848 Stevens organ in Belfast, Maine, completing a new organ in Castleton, Vermont, and installing a rebuilt historic tracker (I do not remember the builder) in a Salvation Army chapel in Providence, Rhode Island. A lot of the summer was spent driving around New England between those organs, my first glimpse into the life of a vagabond organ guy.

During my sophomore year I started working part time for John Leek, the organ and harpsichord technician for the Oberlin Conservatory of Music. I spent the next summer working with Bozeman during which the company moved to their permanent workshop in Deerfield, Massachusetts. There were a couple hours of “barn building” each day after the organ building. I continued part time with Leek as long as I was a student and switched to full time after I graduated. Counting the summers and part-time work, I have been at it for forty-six years.

After Christmas of 2019 I retired from working on organs on site and in my workshop. No more weeks spent wiring organs, no more service calls, no more console rebuilds—my favorite workshop job. I hasten to add that I continue to run the Organ Clearing House, managing the sale of vintage organs, and keeping the crew busy. I am still working as a consultant and still writing monthly columns. They will have to snatch the MacBook® from my cold dead hands. I have not yet imagined a time when I would not be doing some type of work with pipe organs.

With the outbreak of Covid, Wendy and I left New York City for our place in Maine, bringing the families of two of our kids with us. My private workshop, the three-car garage, became a staging space for groceries for our expanded household as we quarantined everything we brought into the house. When winter turned to spring, we added a refrigerator beside the garage freezer. The workshop has always been at least part boatyard. I have a couple shelves of boat parts, the expensive stainless-steel screws we use around salt water, and there are several lengths of surplus line hanging on a wall. You never know when you are going to need some more line. It is also a gardening shed and kitchen overflow storage for the bigger pots and pans. Lobster pots, roasting pans, and canning jars live on the shelves above the fridge.

This sounds like a lot of clutter, but I still have not mentioned the cabinets, shelves, and industrial drawers full of organ parts and hardware I have accumulated over the years. One year I restored an Aeolian residence organ with its paper roll player. It was playable in the shop for a summer, and we had a string of dinner parties during which we would suggest a break before dessert and leave the table for an organ demonstration. Some of Wendy’s publishing friends and colleagues needed that to understand just what I do for a living. “It was always mysterious to me!” I have rebuilt four or five consoles here, refinishing cabinets, rebushing keyboards, and retrofitting solid-state controls and electric drawknobs.

I know I will keep most of the general hardware as long as we live here. It is handy to have hundreds of sizes of screws arranged in drawers to support home repair projects. This summer, I cut up several lengths of half-inch threaded rod and collected the necessary washers, nuts, and lock washers for a tool hanger I built in the shed. Mending plates, corner braces, and hinges will always come in handy. I have felt and punches to make pads for the bottoms of chair legs; I have lubricants and finishes for pretty much any purpose and big, well-lit workbenches. It is my own private hardware store. Funny, I still go to the hardware store most weeks.

He polished up the handle of the big front door.

Along with his organ work, John Leek built harpsichords, and as we made those keyboards and brass levers to control “choirs” of jacks, I learned about polishing. I have a bench grinder that spins abrasive wheels, wire wheels, and cloth polishing wheels. There is a drawer full of bars of polishing compound, a rake for dressing the cloth wheels, and the nasty wheel with an iron handle for dressing the abrasive wheels. I rejuvenated a rusty cast-iron skillet using the wire wheel. Handy.

There is a case of Parson’s sudsy ammonia on a high shelf. I think there are ten bottles left in it. It is a terrific solution for use in my ultrasonic cleaner. I have used it to clean reed shallots and tongues, little brass console parts like screws and switches. I will hang onto all this because there are lots of things around the house that need polishing, and Wendy’s engagement ring looks great after an ultrasonic swim in sudsy ammonia.

Totally tubular

I have worked on all sorts of pneumatic actions from different organ builders, many of which incorporate some type of rigid or flexible tubing. Seventy-year-old rubber tubing is likely to be crumbling apart. Quarter-inch (interior diameter) tubing is common to many different types of organs, so I have hundreds of feet of that in a coil, destined to be cut into six-inch pieces. There is about forty feet of three-quarter-inch (ID) heavy plastic tubing with nylon webbing embedded. It is made for high-pressure hot water in small gasoline engines, and it was great for use as pneumatic tubing in a big expression motor. I have coils of copper tubing and some straight lengths of aluminum and brass tubing. You never know when you are going to need some.

Parts is parts.

Sometime ago I got the idea that it would be clever to have a supply of the waxed boxes used for Asian carry-out food for storing specific organ parts. I used them for a while, decided they were ridiculous, and discarded most of the minimum order of 1,000 boxes, but some are still around. One is labeled “Schlicker console parts.” I installed a Peterson system in a Schlicker console. Having serviced many Schlicker organs over the years, I know that the little pressed metal toggles in the “ka-chunk” combination actions can wear and break or simply fall out, and here were two or three hundred of them going to waste. I used four or five for a service call repair, and I still have the rest of them. Pretty sure I am not going to need them again.

I have boxes of Austin magnets, Austin note motors, Kimber Allen keyboard contacts, pedalboard contacts, Heuss nuts, leather nuts, compass springs (for the pallets in slider windchests), pouch springs, fiber discs (for making pouches and valves), many sizes and styles of felt and paper punchings for regulating keyboards, and even coils of wire for stringing harpsichords.

For a short while I repaired and rebuilt harmoniums, and I have a heavy box full of the brass reeds. They must have been salvaged from derelict instruments. I do not remember where I got them, but I doubt I did the salvaging because I would have kept them separated and labeled by voices. I may have used ten of them, and the rest are here if anyone wants them. A soak in sudsy ammonia would help. Another box is full of keyboard ivories. I “harvested” them from old pianos and organ keyboards, and having a miscellany of ivories really is useful as you can pick through them to match color and size. While I used many of them for service call repairs and refurbishing old keyboards, I am probably finished with them now.

On the high shelf near the tubing, there is a stack of boxes of various types of windchest magnets. Some have pipe valves that work either electrically or pneumatically, others are the standard “screw cap” chest magnets for pitman and offset chests. And for those times when you are changing wind pressure, there are boxes of magnet caps with one-quarter-inch and three-sixteenths-inch exhaust holes. None of these will have household use.

There are about twenty three-foot cardboard tubes in the rafters containing skins of leather and yards of felt, fabric, and cork. There is enough material to releather a ten-stop pitman chest and a half-dozen reservoirs. There is pouch leather, gusset leather, alum-tanned leather for reservoir belts, and several types and weights of pneumatic leather. I am not sure how much of it I will use, but as I recently gave Wendy a big piece of thin black felt for a sewing project, I will assume it is worth keeping. Since it is up high, it is not in anyone’s way.

Twenty or thirty years ago, industrial chemists developed spray cans of graphite lubricant, perfect for treating windchest tables, sliders, and toeboard bottoms so slider stop action would work smoothly. Before switching to that, I mixed flake graphite with denatured alcohol creating a paste that I scooped with latex-gloved hands and rubbed over all the surfaces. It was a messy process, but when the alcohol evaporated, a rich, even coat of graphite glistened on the wood. Heaven help you if you spilled any on the floor. I have most of a gallon can of graphite that I guess I do not need anymore. I also have half a case of that graphite spray. I can use it on snow shovels to keep snow from sticking to them.

Material handling

In industrial catalogues, material handling is the section that includes dollies, carts, pallet jacks, and all the tools and equipment used to move things around. You can buy a Drum Dolly, a two-wheeler designed specifically to handle 55-gallon drums or a refrigerator dolly—you can guess what that’s for. A refrigerator dolly is a two-wheeler with straps to hold the load in place, and rubber belts that move over wheels on the back so you can haul the fridge up stairs. I have used mine for hauling reservoirs upstairs to choir lofts. The upright freezer in the garage needs to be defrosted occasionally. That can be a nasty job, but it is pretty simple here, and we have been “eating it down” in preparation. Soon, I will move the last few things into the top of the Covid fridge, wheel the freezer through the overhead door, and stand it in the dooryard facing the sun with the door open. It takes a few hours, and there is no need to catch the water.

I have a come-along, a tool with a steel cable, hooks on both ends, and a long handle that pumps a ratchet. I bought it when we were installing an organ and realized it needed to be a few inches to the left. A half-dozen pumps of the handle was all it took to scootch the organ to its proper place. I have not used it on a job since, but we have a half-mile wooded driveway that trees fall on occasionally. I can often hitch a chain to loops on my car and drag a tree out of the way, but several times I have used the come-along tied to another tree to do the job when I cannot make the angle with the car. We also use it to pull the dock out of the water. I am keeping that.

The opposite of the come-along is a house jack that I have used often when releathering reservoirs. After the hinges are glued to the ribs, the pairs of ribs are glued to the body and top, and the belts are glued on all around, you have to open the thing fully before gluing on the gussets. You are stretching all the new material and glue, and it can be a heavy lift, especially on a large reservoir. I have done it with blocks and levers, but a hand-pumped hydraulic house jack is just the ticket. When our daughter wanted to convert a small shed into a pottery studio, our son-in-law and I jacked up the shed and repaired its structure. I will keep the jack.

Another tool I used when gluing reservoirs is the big double-boiler you see keeping soup warm in a cafeteria line. Having hot wet rags is essential when using hot glue, and I have a Sharpie mark on the front for the little volume knob, setting the temperature high enough to soften excess glue, but not so hot that I cannot put my hands in it. When I was gluing four or five reservoirs at once, the pot would be hot all day, and I would change the water every hour as it got dark with the glue. We like to give big parties, and a steaming pot of clam chowder would be just the thing for a chilly fall cookout, but I think this appliance has too many miles on it for use in food service. It is handy for soaking labels off jars.

My Rubbermaid® rolling table has ball-bearing casters and a load limit of 500 pounds. I know it can bear more than that. It is about the same height as my workbenches and the rear end of my Chevy Suburban, so I can wheel a windchest or reservoir from the back of the car to the workbench without lifting anything, and it is perfect for moving lumber between planer, table saw, and cut-off saw. I can also wheel groceries from the car to the Covid fridge, and I have even used it to wheel our eight-foot fiberglass dinghy to the car. Yes, you can put an eight-foot dinghy in a Suburban and close the door. I get fussy when other people in the family leave stuff on my rolling table because I like to keep it free for the next use. I’m keeping it.

One of our kids bought a couple big inflatable rubber swim toys. I especially like the Grandpa-sized pink inner tube with its five-foot dragon tail, lots of fun for swimming off the dock with our grandchildren, and it is convenient to have an air compressor with a big assortment of fittings. It saves fifteen minutes of huffing and puffing when you could be in the water. The fifty-foot air hose hangs on a steel column between garage bays, so it only takes a moment to set up to check the air of the tires on cars parked outside.

Perspective

There is almost no end to the list of tools, materials, supplies, and equipment in my garage workshop. I am still using most of the tools for projects around the house. This summer I built a neat set of drawers using quarter-sawn oak to match my library table desk. I am just starting a new “private drive” sign for the top of the road using birch lumber left over from a set of bookcases I made for Wendy’s office. I will use a pin-router to make the lettering. Wendy is a talented and productive weaver, and there is nothing like an organ builder as tech department for a house with two looms.

I hope this little tour is informative to organists who might not know much of what is behind the service technician who works on your organ or the organ company that built or rebuilt it. Mine is a light-duty shop, a delight for me to work in alone or with a colleague or two. It is especially nice in the summer with the overhead doors open. I keep thinking I will not do any more organ work there, but it is easy to imagine a time when our crew is working nearby and something needs to be releathered quickly. I might just bend the rule.

In the Wind: casting of metal pipes

Casting a metal pipe
Casting pipe metal, Rudolf von Beckerath, Hamburg, Germany (photo credit: John Bishop)

Made right here

The organist of my home church was a harpsichord maker, and visiting his workshop was my first exposure to building musical instruments. I guess I was something like ten or eleven years old so my impressions may not have been very sophisticated, but as I think back over more than fifty-five years in the business, I must have been impressed. I started taking organ lessons when I was twelve, and sometime soon after that a mentor took me to an open house at the original workshop of the Noack Organ Company in Andover, Massachusetts. There I got an early eyeful of what goes into the instrument I was learning to love.

Since that first encounter with the art of organ building, I have been privileged to visit many organ builders—from large and impressive operations like Casavant Frères and Schantz to tiny one-person shops. There are elements common in the smallest and largest shops. For example, every organbuilder has a table saw. I like to say that organbuilding can be described as the art of knowing where to put the holes, which means each workshop has a drill press and an impressive collection of drill bits. There are thousands of drill bits in my workshop, ranging in size from a few thousandths of an inch or tenths of a millimeter to three-inch behemoths for drilling large holes in rackboards. You have to hang on tight when one of those bad boys is turning in the wood.

Every shop has a setup for cutting and punching leather. I use the plastic cutting boards you buy in fabric stores for cutting long strips of leather and a rotary knife like a pizza cutter, and I have a heavy end-grain block capped with half-inch-thick PVC for punching the thousands of leather circles and buttons needed for the leathering of pneumatic actions and valves.

Over my half-century experience with organ shops, there have been countless innovations in the world of tools. When I was an apprentice working with John Leek in Oberlin, Ohio, we turned all our screws by hand. Dismantling a large electro-pneumatic-action organ for releathering was like a triathlon, working over your head with a screwdriver turning thousands of screws to release bottomboards, pouchboards, stop action machines, and windlines. We had forearms like Popeye. Later we had the first electric screwdrivers, which were simply drill motors that had to be plugged in. At first, they were too powerful for driving screws into the soft wood of organ windchests, but soon adjustable clutches were introduced allowing you to set the torque of the machine to avoid stripping the threads of too many screws. Still, these had power cords that were a nuisance to keep away from the pipes of the windchest below where you were working. It was always a Mixture.

When cordless drills and screw guns were introduced, the battery life was not great. You would need to have three or four batteries dedicated to each tool if you wanted to run it for a few hours, changing and charging the batteries as you went. Today there is a wide range of powerful twenty-volt tools available with remarkable battery life and torque enough to sprain your wrist. I have switched my entire assortment of professional and home maintenance tools to the 20V DeWalt system, including chainsaws and weed whackers, delighting that I no longer need to keep gasoline around the house. I can run that weed whacker for an hour on a single charge, long enough to get around our large rural lawn. And the screw guns just keep going and going.

Was it twenty years ago when Computerized Numerical Control (CNC) machines were becoming popular? These technological marvels can be programmed to quickly produce complicated woodworking projects. One of the first uses of CNC machines in organ shops was the drilling of windchest tables that have rows of different sized holes for each stop. A drawing is fed into the computer, and the machine selects the bits and drills away. I remember standing at the drill press, drilling the holes in rackboards, toeboards, and sliders for a new organ, changing the bits by hand for each different hole size. A long row of boards stood against the wall nearby, and I drilled the 7⁄16-inch holes in all of them, then would change the bit to half-inch and start again. (I followed the rule of drilling the smallest holes first, knowing that if I made a mistake and drilled a hole or two too many with one bit, it would be easier to correct than if I had started with the big holes.)

When I first saw CNC machines in operation, it seemed that you would need a group of NASA scientists to operate one. Today, knowing some of the very small shops that had adopted them, it is apparent that pretty much anyone can learn to run one. CNC machines crank out windlines, action parts, reed blocks, pipe shades, and pretty much any part of an organ made of wood. CNC machines are also used for making things from metal, mass producing hundreds of identical parts or producing single complex fittings.

Making metal organ pipes is one of the magical parts of our trade. To do that, especially to make alloys and cast sheets of molten metal, a shop needs an expensive, complex setup that requires a lot of space, so most organbuilders buy pipes made to their specifications by specialized pipe-making firms. Still, several shops have all this equipment, and it is a thrilling process to witness. Metal ingots are melted in a cauldron over high heat, with the different metals, usually tin and lead, weighed carefully as the alloy is specified by the tonal director. The cauldron is mounted near the end of a long narrow table, typically with a stone surface, and the table is fitted with a sled. The metal is ladled into the sled, and two workers push the sled steadily down the length of a table, leaving a thin sheet of the molten brew on the stone. Stare at the gleaming surface for a few seconds, and watch it glaze over as the liquid turns to solid.

Casting metal for organ pipes is a process that has been in use as long as we have had organ pipes. The Benedictine monk, François-Lamathe Dom Bédos de Celles (1709–1779) included beautiful engravings of this process in his seminal book, L’art du facteur d’orgues (The Art of the Organ-Builder), published between 1766 and 1778. When the metal has set and cooled, the sheets are rolled up. They are then either planed by hand or on a huge drum to the specified thickness. Some pipe makers hammer the metal before forming the pipes, duplicating an ancient process that compresses and strengthens the metal. Then they cut the metal to create the different parts of an organ pipe, rectangles for the resonators, pie-shaped for the tapered feet, and circles for the languids. They are formed into cylinders and cones and soldered together to form the pipes. Every organist should find a chance to witness this incredible process.

Potter at work

Harry Holl’s Scargo Pottery in Dennis, Massachusetts, was a common summer evening family outing when I was a kid. We all loved the woodsy setting with a row of potter’s wheels under a corrugated fiberglass roof where we would stand watching Harry and his colleagues, many of whom were apprentices, create beautiful dinnerware, mugs, vases, and bowls. Like the mysteries of casting organ metal, it is a bit of magic to watch an artist place a blob of clay on a wheel and poke and prod it into a vessel. Watching a blob become a bowl is like watching a flower open. The craft is exacting when making a set of plates or bowls. Each is a hand-made individual, but they will stack better in your kitchen if they are pretty much the same size, so the potter uses a caliper to measure the height and diameter of each piece to form a set.

When Wendy and I moved into our house in Newcastle, Maine, in the winter of 2001, my parents gave us a set of eight large dinner plates made by Harry Holl with deep blue glaze in a rippling pattern, which we still use frequently. There is a large table lamp on my desk, and the house is scattered with the lovely artworks from Scargo Pottery that we eat and drink from each day.

Harry worked mostly with ceramic clay that emerged white from the kiln. There is a particular beach near Scargo Pottery with distinctive black sand that Harry liked to blend with his clay, giving his pieces a speckled effect that shows through the glaze. His sense of shapes and his love of his material made him a great artist. His daughters Kim and Tina run Scargo Pottery now, long after their father’s death.

Those summer outings typically had a pleasant coda, as we would pass an ice cream shop called Sea Breezes on the way home. Getting into the car at Scargo Pottery, we would pipe up a sing-song chorus, asking if “Sea Breezes are blowing.” My father was a sucker for ice cream, so it was always a safe bet.

Will it float?

Around us in Maine there are several boat yards that build custom wooden boats. Like any artisan’s shop, they are a delight to visit, and as a life-long organbuilder to whom straight and square are virtues, the absence of straight lines in the hull of a wooden boat is mind-boggling. The hull is nothing but voluptuous curves in every direction, from front to back (forward to aft), top to bottom (rail to keel), and side to side (beam to beam). Boat builders place huge planks into steam-filled vessels to soften them and carry them to the side of the boat where they are fastened to the ribs with huge bronze screws (which don’t corrode in salt water) or wooden pegs. When I worked with John Leek, we used the same steaming process to make the bentsides of harpsichords.

When a hull is complete and decks and interior are fitted out, the boat is launched, a test that no organbuilder ever has to face. I marvel that the never-before-immersed vessel floats flat and level. I guess it is comparable to the marvelous moment when you turn the wind on in an organ for the first time. Both the boat and the organ come to life at their first moments of usefulness.

Back to its maker

In the spring of 2013, Wendy and I set sail in Kingfisher from Marshall Marine in Padanaram, Massachusetts. She is a Marshall 22, built there in Padanaram in 1999. We had purchased her the preceding fall and spent the winter imagining and planning our maiden voyage to bring her to her new home in Newcastle, Maine. Our son Andy then lived in nearby New Bedford, Massachusetts (home of the largest fishing fleet in the United States). We left one of our cars in Newcastle, and Andy dropped us off at the boatyard and took care of the other car while we were at sea.

Our trip took six days and five nights and covered more than 250 miles. We had mapped out the route and reserved dock space or moorings in different marinas for each night. We ate dinner onboard most evenings and reveled in showers at the marinas. It was one of the great adventures we have shared as a couple. A friend raced out in her motorboat to snap a photo of us entering the Damariscotta River. Stepping onto our dock and walking up the back lawn seemed like a miracle. Sleeping on solid ground for the first time in six days, I rolled out of bed onto the floor.

Each summer since, we have set aside weeks for “cruising,” when we provision the boat for days and nights on the water and explore the infinity of the famous rocky coast of Maine. We have anchored in picturesque harbors and on remote islands. After the huge learning curve of handling the boat on the first trip, we have mastered Kingfisher, learning when we can push her, when we should reef the sail against heavy wind, and just how high can we “point” against the wind to round that reef without tacking. We have several friends in the area who have waterfront houses, and one of our favorite outings has been to sail to them for rollicking dinners and slumber parties. And one of the great things about a boat is that you can go places otherwise unreachable.

Last summer, nudged by the pandemic, we left Greenwich Village, moved into our new home in Stockbridge, Massachusetts, and quickly made a gaggle of new friends. Tanglewood, the summer home of the Boston Symphony Orchestra, fifteen minutes from home, would be less of a summertime conflict if they only held concerts when it was not good sailing weather in Maine.

When our local boatyard hauled Kingfisher out of the water last fall, I asked them to touch up the varnish on the brightwork, the teak pieces that trim the fiberglass hull whose finish is ravaged by constant sunlight and salt. He touched it up, all right, and sent me a bill that recalled the saying, “She looks like a million bucks.” It was a surprise, but we took it as a hint. What better time to offer her for sale than when she looks like a million bucks?

Two weeks ago, Kingfisher went by truck back to Padanaram, and last week I stopped by Marshall Marine to deliver the sail that had been at a sail maker for winter cleaning and repair. Geoff Marshall, who runs a workshop with seven people building those lovely boats, is also the broker from whom we bought her, and he walked me through the different buildings, talking about the various boats in different stages of completion. Here is one that is just getting started, and here is another that is due to launch in a few weeks. The new owner is just as eager to see her in the water before Memorial Day as the organist is to play the new organ on Easter Sunday.

When I watched Kingfisher drive up the hill away from Round Pond, Maine, on the back of the truck, I felt as though a piece of me was dying. How we have loved the time onboard with family and friends, and with Farley the Goldendoodle curled up on the deck. There is nothing like the taste of the first sip of coffee in the morning or of a gin and tonic after a long day of sailing, and there is nothing like the thrill of bending the wind to get you to a party.

Frequent readers will remember that I have written many times about the common philosophies of sailboats and pipe organs, that both are human attempts to control the wind. Kingfisher is leaving our family, but I will always have a little salt water in my blood. You haven’t heard the last of it.

In the Wind: Mechanical Failure

John Bishop
That lug nut
That lug nut

Mechanical failure

This morning while doing errands with Wendy, I noticed a lug nut on the tarmac next to our parked car. The inside thread was stripped bare, even shiny and smooth, and while the outside should have had six corners and six sides, only three corners and two of the sides were intact while the rest was rounded. I put it in my pocket and worried it with my fingers as we completed our errands and placed it on my desk when I got home. I have been glancing at it and handling it, wondering how it got so badly deformed. Was it cross-threaded onto the lug so aggressively that the thread was compromised? Did it fall off a car parked there? If so, how many other lug nuts were in such bad shape? How did the outside of the nut get rounded? Did other lug nuts on the same wheel suffer the same damage? It’s bad when a wheel falls off.

Take care of your machines.

For most of us, our cars are the most complex and sophisticated machines we own, and there are some simple maintenance procedures we follow to ensure smooth operation. The fact is that failure to take these steps can lead to serious damage and mortal danger. We change the oil every few thousand miles. When the engine is not running, the oil sits in a reservoir at the bottom of the engine known as the oil pan. When you start the engine, the oil pump brings oil to the top where it splashes about the camshaft and valves, and trickles down across myriad parts to be recirculated. If the oil gets dirty, it does not lubricate as well. If the oil runs dry, the engine parts heat to the point of welding themselves together. I once hit a rock with a lawnmower that cracked the oil drain plug inside the mower deck. The oil ran out, and the engine seized with a bang.

Did you ever notice how your car’s engine clatters for a few seconds when you start it on a cold morning? That is because the oil is extra thick and takes a moment to get to the top of the engine. Are you one of those drivers who starts the engine and immediately puts the car in gear? It would be better to wait until the oil gets to the top of the engine and the clattering stops before you put a load on the engine.

You are backing out of a parking space. You check your mirrors, shift into reverse, and start the car moving. When you shift into drive you hear a clunk from under the floor. Each of those clunks means a little extra wear on the transmission with its hundreds of precise interior fluid channels. I back out of the space, shift into neutral as I stop the car, then shift into drive before I start moving again. No clunk. It is an extra step, but I think it means my transmission will last longer. It is as easy to develop that habit as putting only one space after a period.

When my sons were young, they were delighted to find that they could cause the plumbing to make banging noises in the walls when they turned a bathroom faucet on and off at my parents’ house. My older son is now an expert fabricator with high-end welding skills, and we laughed together recently over that memory. They could have done serious damage to the house by breaking soldered plumbing joints inside the walls.

The same son was a wild driver early on. He loved going fast, he loved having smoke coming off his tires, and he pushed a series of cars to early ends, adding to the huge expense of many speeding tickets, cancelled insurance policies, and suspended licenses. When he finally broke those habits, he observed that it is lot less expensive to drive more conservatively.

Try it again without making noise.

The pipe organ is a musical wonder, and no other musical instrument has such complicated mechanical systems. Our habits at the keyboard and our attitudes toward our instruments can have a significant effect on their reliability. I do not need to mention the organist who habitually placed a sugary cup of coffee on top of the console stopjamb. I chided him about the ugly rings on the lovely, shellacked surface and warned about spills. The spill happened late on a Saturday night, and I was able to get the organ working a little before Sunday services, but removing the keyboards, replacing felt bushings, cleaning contacts, and regluing several of the sharp keys cost many thousands of dollars.

I do not need to mention the organist who played on a nineteenth-century mechanical-action organ and caused heavy bangs in the stop action because of the force he used on the drawknobs. The travel of those sliders is regulated and limited by little steel pins drilled and driven into the windchest tables. There are slots in the sliders that ensure the correct amount of motion, and the pins also fit into holes in the bottom of the toeboards, assuring that they are in the correct position. Slam, bang, thud hundreds of times every time he played, and the stops gradually grew softer and out of tune. Those guide pins were being driven out of their holes, and the sliders were traveling too far, going past the “full open” position, constricting the holes, and underwinding the pipes. That one was a $45,000 repair, removing all the pipes, lifting the toeboards and sliders, repairing the holes, redrilling the pins, then putting everything back together and tuning the pipes.

And I do not need to mention the organist who complained that the piston buttons were unreliable, demonstrating them to me with furious jabs from a powerful finger. Maybe, just maybe, the tiny contacts and springs that make those buttons work were prematurely worn by that vigorous action.

Just as I try to avoid that extra clunk when shifting my car from reverse to drive, you might listen to your console as you play. Does your technique cause extra noise at the keyboards? You might be causing excessive wear.

When I was a student at Oberlin, I had an important lesson about unnecessary noise. My organ teacher, Haskell Thomson, organized a winter term project for a group of us to be led by Inda Howland, the legendary teacher of eurhythmics and disciple of Émile Jacques-Dalcroze. For three days a week through the month of January, ten or fifteen of us bounced balls and performed other rhythmic exercises to the beat of the drum that always hung on a lanyard around Ms. Howland’s neck. Later in the month, we moved to practice rooms where we played for each other with her coaching and comments. I was working on Bach’s Toccata in F at the time, and I bravely powered through those familiar pedal solos with my pals huddled around the little organ. (If you think the acoustics in a practice room are dry, add twelve inquisitive pairs of ears to the mix.) When I finished, Ms. Howland referred to the noise of my feet on the pedalboard, “try it again without making noise.” That one comment had more impact on me than ten years of organ lessons, and I know my pedal technique improved from that moment on.

The most mechanical of musical instruments

A violin is nothing more than a curiously shaped box with a neck and four strings. The only things mechanical about it are the tuning pegs that use “friction fit” to maintain the exact tension to keep each string in tune. A trumpet has three valves that function like pistons, connecting tubes of various lengths as their positions are changed. A clarinet has eleven holes that are opened and closed by a system of levers operated by the player, and a piano key action has about ten moving parts for each note, mounted in neat rows.

Open the door of an organ case or organ chamber, and you face a complex heap of contraptions that somehow unify into a musical whole. There are bellows or reservoirs to store and regulate wind pressure, ducts to direct the wind throughout the organ, levers, switches, and wires connecting keyboards to valves, ladders and walkboards to allow technicians to clamber about inside. As it is the challenge to the musician to play the instrument with as little extra noise as possible, it is the job of the organ builder to make the machine disappear. The inherent mechanical nature of the instrument is minimized to allow the most direct communication between the musician’s brain and the listener’s ears.

Ernest Skinner, one of the most ingenious mechanical and tonal innovators in the history of organ building, invented the “whiffle-tree” expression engine. The origin of the whiffle-tree is the system of harnesses used to hitch a team of horses to a wagon that allows the force of the pull of each individual animal to be evenly added to the whole. Skinner made whiffle-tree motors with eight or sixteen stages depending on the size and glamour of the organ. They include large power pneumatics inside the machine connected to the marionette-like whiffle-tree that pulls on the shutter action, which are exhausted by a row of primary valves at the top of the machine. The motors are activated when you “close” the swell shoe, pulling the shutters closed. There is either a spring or a heavy counterweight with cable and pulleys to pull the shutters open when the motor is disengaged. To avoid the possibility of the shutters slamming closed, Skinner made the primary valve of the last stage smaller than the rest, constricting the exhaust, and slowing the motion of the shutters at the end of their travel.

While Mr. Skinner’s machine was effective at quieting the noise of closing shutters, I am reminded of a moment when operator error allowed expression shutters to make not only extra noise but visual distraction. A friend was accompanying a chorus on the organ in a music school recital hall and asked me to sit in on a rehearsal to listen for balance. She had chosen great registrations, so there was little to say there, but she was beating time with the Swell pedal, and since the shutters were fully visible as part of the organ’s façade, it was a huge distraction. We broke that habit.

Things that go bump in the night

In the 1980s and 1990s, I was curator of the mammoth Aeolian-Skinner organ at First Church of Christ, Scientist, in Boston, also known as “The Mother Church.” Dr. Thomas Richner was the organist, a colorful, diminutive man with a wry sense of humor and marvelous control over that organ with its nearly 240 ranks. My phone rang around eleven one evening, “Pee-pee” (he called everyone Pee-pee), “something terrible has happened to the organ. I closed the Swell box and there was such a crash.” That Swell division has twenty-seven stops and forty ranks including a full-length 32′ Bombarde, and there are four big windchests with four huge banks of shutters coupled together. I went to the church the next morning to find that the cable of the counterweight for the Swell shutters had broken, and several hundred pounds of iron had crashed onto the cement floor. Practicing alone late at night in a dark church, the poor man must have jumped out of his skin.

In the 1960s, organ builders were experimenting with electric motors to control the stops of slider chests, and one of our supply houses marketed Slic Slider Motors, grapefruit-sized units with a crank arm on top that rotated 135-degrees or so from “on” to “off.” I suppose they were among the first units to work reliably in that application, and lots of organ builders used them. The travel was adjustable, and they worked quickly. But the noise was unmistakable, schliK-K-K! I remember as a pre-organ builder teenager sitting in a big church listening to an organ recital, wondering what all that noise was. After a particularly large and noisy registration change, the mentor who had brought me leaned over and explained it. That was before I knew Inda Howland, but I am sure she would not have approved.

In the early 1970s, Laukhuff, the prominent German organ supply firm that recently and unfortunately ceased operations, developed a double-acting solenoid slider motor. It was housed in a steel case, and there were steel “stops” with heavy rubber bumpers attached to the shiny central shaft to limit the travel of the sliders. I maintained several organs that featured those motors. They worked beautifully until the rubber bumpers crumbled and fell off after thirty or forty years. The motion of the powerful motors was now limited by steel-on-steel, and they made an impressive hammer-on-anvil sound as they operated. I made a supply of replacement bumpers to keep in each organ punched out of woven green hammer-rail felt with a slit cut to the center hole so they could be popped onto the shaft without dismantling the motor.

Going out with a bang

During the “organ wars” of the 1960s and 1970s, “tracker detractors” chortled, “if it clicks and clacks, it’s a tracker.” Fair enough—lots of tracker organs have action noise, especially older ones. But the thousands of “pffts” from an electro-pneumatic organ are also often audible from the pews. Modern tracker actions have Delrin and nylon bushings to replace the metal-on-wood systems found in older organs and carbon-fiber trackers that do not slap at each other like traditional wood trackers.

It is easy and relatively inexpensive to include muffler covers to quiet electro-pneumatic actions, but I have often been in organs where a previous technician left the covers off for convenience, allowing the action noise to be clearly audible. And tremolos: how many of us have heard them set up a Totentanz with reservoir weights jumping and thumping and valves huffing and puffing? Screw down those weights before they bust a gusset in a reservoir and build a box around that pufferbelly. It is not helping the music.

Along with space-age materials that allow us to build quieter actions, we have space-age lubricants to keep things running smoothly. A squirt or two and the squeak is gone, and the part moves effortlessly. But there was a spray lubricant used widely in the early 1970s that worked fine for a generation but turned gummy as it aged. Several prolific organ companies used it to lubricate the sliders of windchests, and stop actions failed as the stuff gummed up the works. I had several jobs that involved removing the pipes, taking up toeboards and sliders, cleaning off the old goo with solvents, and spraying on a new lubricant. I hope the stuff I used will last longer than the original. There is an old joke about it being easy to spot the organ builder as he walks through town because all the dogs follow him, attracted by the smell of mutton tallow he used to grease the skids.

Part of the magic of the pipe organ is its ability to move from a whisper to a roar and back again. Part of the challenge of effectively playing an effective instrument is to preserve the music itself as the only noise. I’m grateful to Inda Howland for her keen observation of the bombast of my twenty-year-old self. Let the music play.

In the Wind:

John Bishop
The Spirit of Life
The Spirit of Life by Daniel Chester French (photo credit: John Bishop)

Where it all begins

When I was growing up, my family had a summer home on Cape Cod where we grew enamored by a brilliant potter about five miles away. Scargo Hill Pottery was founded by Harry Holl, and over fifty years later his daughters still make the characteristic shaped dishes, mugs, and vases we grew to love. Harry worked with white porcelain that he accented with dark spots made by mixing the black sand from a specific nearby beach into his clay. He accented them with vibrant glazes. Our household and those of my siblings are rich with Harry Holl pieces; it is lovely to eat daily meals off such beautiful art and to have such ornaments on our walls and shelves.

From its beginning Scargo Hill Pottery has had a wonderful, almost spiritual side. There is a row of potter’s wheels in a sunlit spot with a translucent fiberglass roof and no walls, where you can stand and watch the artists create their products. I still think it is magical to watch a turned shape emerge from a lump of clay and become a useful vessel. From my earliest teenage years I have been in love with places where beautiful things were made. On many a summer evening, we piled into the car after supper to visit Harry and his troupe. The lovely outings were capped by a stop at Sea Breeze soft-serve ice cream conveniently located along the route.

§

The 150-acre summer estate of sculptor Daniel Chester French (1850–1931) is a couple miles from where we live in Stockbridge, Massachusetts. French is perhaps best known for two iconic public sculptures, The Minute Man statue in Concord, Massachusetts, near “the rude bridge that arched the flood,” and the monumental statue of a seated Abraham Lincoln in the Lincoln Memorial in Washington, D.C. He bought the property in 1896 and immediately commissioned the construction of a studio that became his principal workspace for the rest of his life. At that time there was train service from New York to Stockbridge; the Stockbridge station, long out of use, still stands just a couple miles from Chesterwood.

The studio is situated close to the house and has large glass windows providing plenty of natural light inside that feature broad views of Monument Mountain and the rest of the southern Berkshires. The principal work room is twenty-nine feet by thirty feet with twenty-six-foot-high walls allowing enough space for monumental equestrian statues. Since most of French’s work was to be installed outdoors, the design of the building included a working platform on railroad tracks with large doors that allowed him to move a massive work in progress outside so he could view it in natural light. He was so eager to work in the beautiful new space that he moved in two weeks before it was complete. The building included a reception room where he could receive potential clients and where his family had afternoon tea when the weather would not permit using the house’s grand south-facing porch.

The Minute Man was completed in 1875 for the centennial of the start of the Revolutionary War, before French acquired Chesterwood, but the Lincoln Memorial was completed in 1920. French designed Lincoln’s statue at Chesterwood, and a six-foot model is on display there. The full-scale statue was carved by the Piccirilli Brothers whose studio was on 142nd Street in the Bronx, New York. A four-foot bronze statue of a winged angel by Daniel Chester French, The Spirit of Life, stands in a portico at Saint Paul’s Episcopal Church in Stockbridge.

A visit to Chesterwood is an inspiration. It is thrilling to think of the wealthy and powerful people who traveled there to commission public art, and wonderful to imagine the brilliant and prolific artist toiling in the lovely studio in that bucolic setting, surrounded by family and friends.

§

Another iconic artist’s studio is within walking distance of our house in Stockbridge. Norman Rockwell had been living in Vermont when his wife began treatment at a prominent psychiatric hospital in Stockbridge, and Rockwell moved his family there in 1953. His first studio in this town was behind a large plate-glass window in the central storefront of Stockbridge’s Main Street, directly above the Back Room Rest, familiarly known as Alice’s Restaurant of Arlo Guthrie fame. He later built a free-standing studio with plenty of natural light on South Street. When the present building of the Norman Rockwell Museum was opened in 1993, the studio was moved to the new site where museum visitors can go inside to see Rockwell’s easels, paints, brushes, props, and tools.

Many hundreds of Norman Rockwell’s large-scale paintings were featured on the covers of The Saturday Evening Post and are inscribed in the artistic minds of millions of people around the world. I have been moved many times by sitting on the bench and playing the keys upon which the giants of organ music sat and played—Widor, Dupré, Saint-Saëns, Fauré, and so many others. It is equally moving to see the stool on which Rockwell sat while painting his beloved three-dimensional self-portrait, his iconic Rosie the Riveter, and The Runaway.

Our place in Stockbridge backs up to the cemetery where every morning I walk Farley the Goldendoodle through the cemetery, past Norman Rockwell’s grave to the adjoining Naumkeag estate, a great place for him (Farley) to be off leash for his morning constitutional. Norman is there with two of his wives, his gravestone festooned with tubes of paint, paintbrushes, and little trinkets left in tribute to his marvelous career and influence on our cultural life. Our granddaughter has been swept up by Norman-mania, being sure to visit him each time she visits us.

That Ingenious Business

In 1990 the Pennsylvania German Society published a book by our late colleague, friend, and organ builder, Raymond Brunner about the Pennsylvania German organbuilders Philip Bachman and David Tannenberg, among many others. These were some of the first organbuilders active in the United States, and a few authentic examples of their eighteenth-century American-built organs are still extant. As the organ was the most complex device built by humans at that time, the phrase “that ingenious business” evolved around that local industry. Now we are surrounded by technological marvels—no eighteenth-century organbuilder could have imagined mobile phones, flat-screen televisions, or nuclear submarines, but the pipe organ remains one of our fascinating achievements.

Among my many pleasures of working with the Organ Clearing House is visiting the workshops where pipe organs are built. We have working relationships with many of the country’s fine organbuilders as we help them with their projects, providing truck transportation, rigging and hoisting, assembly and disassembly. I have been in dozens of organ shops both here and abroad, and I always marvel at the creativity and dedication of the people in them. My first shop visits were open houses at Fisk and Noack in the 1970s when I was in high school. Organbuilder George Bozeman was an early mentor. I sang with his wife, Pat, in the choir at my home parish, and they were generous, taking me to those magical places to see organs nearing completion and ready to be dismantled and shipped. My high school organ teacher John Skelton also shared those wonders with me.

My first experience working in an organ shop was the summer of 1975, between my freshman and sophomore years at Oberlin, when I spent those months in the workshop of Bozeman-Gibson & Company. The shop was in Lowell, Massachusetts, in a building previously occupied by organbuilder Rostron Kershaw, and I spent my first day as a nascent organbuilder in the parking lot with sawhorses, façade pipes, Zip-Strip, hose, bucket, and rubber gloves. Oh, the glory of it. The parking lot was shared with a guy who transported chickens on a flatbed truck stacked high with wooden coops. I do not think he raised the chickens. I guess you would say he was trafficking in chickens, but the truck clattered in and out, and he was always happy to take the sawdust from the dust collection system to line his coops. Once when the bin was empty, he asked if we would plane some wood.

That summer, the company was working on the restoration of the wonderful 1848 George Stevens organ in the First Church of Belfast, Maine, and the installation of a new organ in the Federated Church of Castleton, Vermont. What an adventure it was for a nineteen-year-old enthusiast to spend the summer driving around New England, staying in motels, eating with a meal allowance ($1.50, $2.50, $3.50 for breakfast, lunch, dinner), and having my first hands-on experiences with organs. I returned the following summer and helped install the Bozeman-Gibson organ on Squirrel Island, an exclusive summer community off the Maine coast near Boothbay Harbor, six miles as the crow flies from our house in Newcastle.

Nearly fifty years later, I still marvel at the magic. I have a sense that it is improbable that we would be allowed, even encouraged to make something as otherworldly as a pipe organ. The variety of skills involved seems endless. An organbuilder is an architect, carpenter, woodworker, steel worker, electrician, leather worker, metallurgist, sculptor, acoustician, and musician. A comprehensive workshop houses familiar machinery like saws, drill presses, and planers, milling machines, and welders, and equipment you are not likely to see elsewhere like the cauldrons for melting soft metals, and especially the tables for casting the long sheets of metal used to make organ pipes.

François-Lamathe Dom Bédos de Celles de Salelles (1709–1779, we know him familiarly as Dom Bédos) was a Benedictine monk and organbuilder who published a monumental treatise, L’art du facteur d’orgues (The Art of Organbuilding) in 1778. Its volumes are packed with elegant engravings showing all facets of the trade including tools, workbenches, mechanical actions, wind systems, windchest layout, and clever exploded views of the interior of a complete organ. The cauldron and casting table are clearly illustrated, just like those found in modern workshops. I imagine that Dom Bédos built lovely big bellows to help tend the fires under his melting pot. Of course, today’s organbuilders do not have to stoke wood fires to melt their metal; a gas burner does the trick in a trice. Flipping through the pages of the good monk’s treatise shows how little has changed in the craft in nearly 250 years.

But how much has changed

Aristide Cavaillé-Coll (1811–1899) is revered for the tremendous legacy of pipe organs his company produced for such churches as Notre-Dame and Saint-Sulpice in Paris, but along with over 500 instruments he was honored for the invention of the circular saw blade. How we take them for granted now. I still have the table saw I bought in 1987 when I started the Bishop Organ Company, and I have ten or fifteen circular blades for it, some of which have specialty uses. Most of them have carbide steel tips on the teeth that stay sharp through miles of cuts. Think of spending a day making thousands of wood trackers, maybe ten feet long with a cross section of 1.5 by 8 millimeters. You stand at that saw all day making cut after cut. It is monotonous, but you cannot let your mind wander because you really want precise cuts, and you want to keep your fingers. (I still have all mine after forty-nine years behind the saw.)

As repetitive and precise as that task is, besides the circular saw blade we have the added luxury of a shop-wide dust collection system. The good monk had none of that. He cut those trackers by hand. My mentor John Leek taught me to make long, straight saw cuts and to plane a board flat and parallel by hand before I was free to use the machines. It was a great learning experience. I hardly ever did that again, but that helped me imagine the time, effort, and concentration it would take to make an organ full of trackers by hand. Or think of making a keyboard by hand with sixty long straight cuts. When I worked for Angerstein & Associates in Stoughton, Massachusetts, in the 1980s, I built the four keyboards for the new console of a large organ in Corpus Christi, Texas, and I remember that the lowest few naturals of the bottom keyboard were a little wider than the others. I have not noticed anything like that in any of the historic organs I have visited. I recently had a fun exchange about that with the good people of the Red River Organ Company who maintain that organ now.

I had a root canal a couple months ago—not my first choice of how to spend a morning, but I had a good laugh with the endodontist when I told her that the smell of grinding my teeth reminded me of standing at a table saw cutting ivory or cow bone for keyboards. I was impressed by the array of teeny cutting tools she used with a compressed-air motor to drill so delicately into the roots of my teeth. She spoke softly to her assisting technician, “A 14, please,” “A 12, please.” Between gulps, I asked if those were bit sizes. Yes, but of course the numbers refer to length in millimeters, not diameter.

Drill sergeant

The art of organbuilding can be defined as the art of knowing where to put the holes. Each pipe in an organ needs at least two holes, a toehole to stand in and a rackboard hole that stands it up straight. In a slider chest, there are two more holes for each pipe, one in the windchest table and one in the slider. A ten-stop, sixty-one-note slider chest has 2,440 holes. Those in the windchest, sliders, and toeboards range from about ½ inch to 1¼ inches with some larger oval holes because the holes cannot be larger than the travel distance of the slider. The rackboard holes range from about ½ inch to 3 inches or more, with the largest pipes supported by felted “scallop” racks higher up on the pipe. Dom Bédos’s windchests did not have sixty-one note compasses, but he still had to drill thousands of holes just to hold up and blow the pipes. There are usually at least two holes in each key of a keyboard, one for a balance pin, and one for a guide pin. He built an organ with five manuals, each with fifty-six notes—that is 560 holes. He used a “bit-and-brace” drill with handmade bits. What skill, precision, and plain hard work 
was involved.

I have thousands of drill bits in my workshop—twist bits, multi-spur bits, Forstner bits (guided by the outside edge rather than a center pin), countersinks, and spade bits. To turn those bits, I have a little fleet of drill motors with rechargeable batteries and the drill press I bought with the table saw.

With your own eyes

If you have not already, I hope you all get to visit an organ shop sometime. Most companies that build new organs love to host open house events when an organ is ready to be shipped. Those events typically include food and drink, displays about how certain tasks and processes are accomplished, and the added excitement of visitors from the church where the organ is going. If you are planning a trip to an area that is home to an organ company, get in touch through their website or give them a call to ask if you might visit. At least they will put you on a mailing list for the next open house. There is an old gag about sausages—you might love to eat them, but you do not want to watch them being made. Watching the artisans at work in an organ shop will inspire your love of the instrument and will inspire your musicianship. It’s nothing like sausages.

In the Wind. . .

John Bishop
Organ pipe trays

Shipping and handling included

Wendy and I live in a building with about two hundred households. We are mostly anonymous neighbors; just a few fellow residents are casual acquaintances. The people we chat with the most are the other dog owners, and we are more likely to know the dogs’ names than their owners’. Farley the goldendoodle is a cheerful and friendly guy so he attracts a lot of attention in the elevators and lobby.

Living in close proximity to that many people, we are constantly reminded of what a click-and-ship world we live in. Adjoining the building’s lobby is a large package room lined with shelves ten feet high where the doormen sort hundreds of parcels. Since Amazon started same day delivery in the city, as many as a half-dozen delivery trucks stop each day.

Twice a week, mountains of trash and recyclables are piled on the sidewalks including thousands of collapsed cardboard boxes tied with twine. Along with the boxes, we routinely throw away bales of bubble wrap, tons of Styrofoam peanuts, and miles of strips of air-cushion bladders. It can be a wicked nuisance dealing with a big carton of peanuts. It is especially annoying when they get charged with static electricity and I cannot get them off me. And for goodness sake, keep them away from the dog.

I am thinking about packaging today because I am just finishing an organ project in my little workshop in Maine, starting to take things apart and getting them ready for shipment. Yesterday, I went to a storage locker I rent nearby and loaded several empty pipe trays into my car. The standard size we make at the Organ Clearing House is eight-feet by two-feet by eight-inches deep. They are larger than those made by some other companies, and when they are full, they are heavy, but we think they are just right. Low EE of most 8′ stops fits in those eight-foot trays, so we also make some ten-footers to hold the biggest four pipes. We can get the biggest four of an 8′ Principal into one of those, or the biggest four of two 8′ strings.

My car is a Chevrolet Suburban, big enough to hold an eight-foot rowing dinghy with the doors closed. A guy at a local boatyard called it a Chevy “Subdivision.” When there is no boat inside, I can get four eight-foot trays in the car with the doors closed.

I took the pipes off the windchests and laid them out in order on a big work surface. I lined the bottom of each tray with a ¼-inch thick Styrofoam sheet (we buy it in 250-foot rolls, perforated every foot, three rolls come in a “tube”). I opened a carton of clean 24-inch x 36-inch newsprint, and started wrapping pipes. With experience, you get a sense of how many pipes should be in a package. I use several sheets of newsprint at a time to weave between six-foot pipes so they cannot bump against each other. Going up the scale, getting to around tenor F of an 8′ stop (a three-foot pipe), each pipe is wrapped individually. After middle C, two to a package, then three, then maybe as many as six or seven treble pipes. When I am putting several pipes in a package, I roll it each time so there is paper between each pipe, and I fold the ends over opposite sides to increase the padding. My favorite local butcher does the same thing with the marvelous sausages he makes. A piece of tape holds the package closed, and the bundles are lined up in the trays. If the pipes are not very heavy, I can put a couple layers in a tray separated with Styrofoam.

My personal shop is a three-car garage that adjoins our house, and this is a tiny organ. It started as an M. P. Möller Double Artiste, and we are adding a third three-rank division to make a total of nine unified ranks. The user interface is a large three-manual console, also by Möller but from a different organ, equipped with a fancy combination action. It is to be a practice organ for a school of music, providing students with a platform for working on the complex Romantic and symphonic registrations that are so popular these days. This will be a simple shipment, nowhere near a full truck. The only complication is that we will be driving it over the Rocky Mountains in mid-winter.

That load will include eleven trays, nine with pipes and two with odds and ends, bits and pieces (the stuff Alan Laufman called “chowder”), console, bench, three windchests, two “expressive” cases including shutters and shutter motors, three wind regulators with windlines, a blower, the biggest pipes of a nicely mitered 16′ Bourdon (too big for trays), and the rest of the flotsam and jetsam it takes to make an organ. I am guessing the load will weigh around 6,000 pounds including the trays and packing materials. We will also be carrying a new residence organ built by a colleague firm, as its new owner lives in the same western city. We are always happy to throw another organ on the back of the truck if there is space.

§

When we estimate the cost for dismantling and packing an organ, we consider the number of person-days and crew expenses like travel, meals, and lodging. We decide whether we will need to rent scaffolding and set up hoisting equipment, and we figure how much we will need in the way of packing materials. An important variable is the tray count, which varies as much by the style of an organ as it does by number of ranks. If we are packing an organ with mechanical action built in the 1970s with low wind pressure and small scales, we can figure on two or three ranks per tray. (A usual four-rank mixture easily fits in a single tray. You just have to be sure you label the packages so you do not mix up the ranks.) If we are packing a heavy Romantic organ like something built by Skinner, it is more like two or three trays per rank. A big fat Skinner 8′ French Horn can fill four trays!

Based on long experience, we run down the printed stoplist of an organ and note how many trays we will need for each stop, and I enter the totals for eight-foot and ten-foot trays into a spreadsheet that spits out the lumber list. A four-by-eight sheet of 7⁄16-inch OSB (Oriented Strand Board) makes two tray bottoms, and it takes two ten-foot pine 1 x 8s to make the sides and ends. When we dismantled an eighty-rank Aeolian residence organ on Long Island (imagine that!), we figured we would need 160 eight-foot trays and 40 ten-footers, and I sent this list to City Lumber in Long Island City, New York:

120 4′ x 8′ sheets OSB

320 10′ 1′′ x 8′′

80 12′ 1′′ x 8′′

120 8′ 1′′ x 2′′ strapping (10 bundles) for battens on tray tops

1,680 feet ¼′′ x 2′-wide Styrofoam (7 rolls)

50 pounds 15⁄8′′ coarse thread drywall screws

The bill was $5,277.33, including delivery, and we gave the driver a $50 tip.

When we have finished dismantling an organ, the packed trays go on the truck first. A standard semi-trailer is 100-inches wide inside so we can stack four piles wide. If we make stacks of ten trays each, we can cap the stacks with sheets of plywood and put 16-foot metal bass pipes up top. The big metal pipes are wrapped individually in Styrofoam for protection. Interior height of the trailer is 110 inches. Four trays wide and ten high, that is forty trays for each eight feet of trailer. The trailer is 53-feet long—240 trays is a truck full. That is less than the tray count for the wonderful Skinner/Aeolian-Skinner organ at the Cathedral of Saint John the Divine in New York City.

When we are packing an organ that large, the trays are just the beginning. Think about the organ’s biggest pipes, like that 32′ Double Open Wood Diapason. The biggest pipe is more than 35-feet long, and about two-feet square. I guess that pipe weighs 1,500 pounds and by itself makes a big dent in an empty trailer. Three 32′ ranks (Diapason, Bourdon, and reed) and the windchests of that huge organ fill truck number two. Reservoirs, shutters, expression motors, tremulants, windlines, ladders, and walkboards fill truck number three. And number four brings the console, frames, expression box panels, blowers, and 8,000 pounds of chowder.

§

Most of the trucks with box trailers that you see on the highway are carrying loads of goods that are all the same size, packed on pallets whose dimensions are calculated to exactly fill the trailer’s interior space. Paper towels, potato chips, mattresses, and tableware are packed in boxes whose dimensions exactly correspond with the pallets. A truck backs up to a loading dock, and a forklift runs in and out carrying pallets, two or three at a time. The trailer is nothing but a metal and fiberglass box. There are no hooks, cleats, or straps to fasten the load. There is no need, because the load assembles to the same dimensions of the trailer, and it takes fifteen minutes to pack.

We engage special commodity trucks, which come with lots of special equipment. There are highway bars that span the interior by clicking into vertical tracks on the trailer walls and support plywood floors, so we can build a second story that safely carries smaller components. There are ramps and hydraulic tailgates because we almost never have the luxury of a loading dock, and a standard complement of twenty-dozen quilted furniture pads. We specify that we will need six or eight hours to load the truck as they typically charge extra when it is more than two hours. The trays go into the truck fast and neat, and the rest of the organ is like a ten-ton game of Tetrus. Because no two parts of the organ are the same size, the pallet-and-forklift equation does not work at all. Each piece of the organ is wrapped with pads as it enters the truck. At the other end of the trip, it is a huge job just to fold all those heavy pads, and the drivers are always fussy about making neat piles.

§

Most of the organs we move fit into “Bobtail” trucks, the standard single-body box trucks we can rent from Ryder or Penske. A usual two-manual organ fits in a single truck. Forty years ago, when I was first in the organ business, there was little in the way of regulation controlling the type of trucking we do. Today, the Federal Motor Carrier Safety Administration makes us jump through regulatory hoops. If we are carrying an organ that we have owned and are selling to a client, there is no problem. But if we are carrying an organ that belongs to someone else, like a church or school, especially if we are crossing state lines, we have to be ready with our DOT and MC (Motor Carrier) numbers whenever we encounter a weigh station on the highway. That makes us an official trucking company, and I receive a lot of a gear-jamming junk mail that has nothing to do with organs.

In 2008, we were engaged to bring an organ to an important church in Antananarivo, the capital of Madagascar, and we would include a dozen pianos in the shipment for a couple churches and orphanages I had visited. I found a moving company in Maine that had a barn full of surplus pianos, rented a truck, loaded them up, and started down the Maine Turnpike. As required, I stopped in the weigh station where the state trooper asked me, “What are you carrying?” “Pianos,” I answered. “Where are you taking them?” My sense of the ridiculous took control, and I answered, “Madagascar!” He directed me into a parking area where three troopers spent a half hour trying to find something wrong with my paperwork, with the truck, with its required emergency flares and reflectors, anything they could think of.

We have worked with many drivers over the years, mostly owner/operators who contract with central dispatchers. Richard Mowen was a special favorite, a wiry little man with a huge Peterbilt tractor. He had replaced the Caterpillar diesel engine after two million miles, and he traveled with a little dog in the cab. Many commercial drivers only come and go from big warehouses with loading docks, while our work in churches around the country is anything but predictable. It may be a narrow cross street in Manhattan or a winding dirt road in a rural village. Richard could put that rig anywhere. It is much more difficult to back a semi-trailer when you have to go backwards to the right, because that is the blind side. It was fun watching him figure his angle, nudging the tailgate right where we wanted it.

Richard loved carrying pipe organs. He moved many organs for us, and we recommended him to a number of colleague companies. He considered organs to be a specialty, and he was a treasure. Sadly, he had a heart attack that took him off the road, but he is still around. We miss his great work and thank him for his terrific service to our industry. Richard left us with one of the best driving tips ever. “I can drive down that hill too slow as many times as I want. I can do it too fast only once.” We will remember that next month when we are driving down the far side of the Rockies.

Then there is the guy who was dispatched to drive an organ from New Haven, Connecticut, to Reno, Nevada. With the truck loaded, we were chatting and joking on the sidewalk by the church when the driver mentioned that it was a good thing we were not shipping the organ to Canada, because he had been busted for transporting firearms illegally and was not allowed to drive there anymore. I called the dispatcher and requested a different driver.

Through all the shipments over the years, there was one that involved significant damage to the organ. We packed and loaded an organ in New York City and sent it off to Los Angeles. The shipment was to be received by a crew from the European company that built it, and they would install it in the church there. The truck arrived as scheduled, and when they opened the doors, they found a mess of broken woodwork and organ parts. There was a language barrier between the organbuilders and the insurance adjuster who viewed the damage. When they told the adjuster that they might have packed things differently, he interpreted that they were saying we had been negligent. Knowing that was not true, I got the adjuster to agree to reconsider if I went to Los Angeles to present a case.

That shipment had an unusual stipulation. We were required to remove the organ from the building in New York before a certain date, and the delivery could not happen until after a certain date, which meant that the organ would be in the truck several days longer than the actual travel time, and we had arranged to pay a daily standstill fee. Naively, I imagined that the truck would sit still in a parking lot. It did not take very much digging to learn that the driver had taken advantage of the situation and made a detour to visit family in the mountains of Tennessee. The trucking company admitted that there had been “an incident” on the road, and the insurance claim was paid.

§

It is fun to think of the romance of building a fine organ, with dedicated craftsmen working together in a comfortable shop, cutting and milling wood, working leather and metal, building the thousands of individual pieces that combine to create an organ. The next time you are playing or listening to an organ, especially a really big one, give a thought to the physical challenge of taking all those pieces and parts from one place to another. The shipping industry calls it logistics or material handling. I think it is a great glimpse into yet another reason that pipe organs are so special. What other musician can measure the size of the instrument by the truckload?

When a load is complete, paperwork signed, doors locked, and the driver climbs into his cab, we give a classic truckers’ greeting, “Shiny side up!”

In the Wind . . .

John Bishop
Organ interior

How does it work?

It happened again. I sat at this desk for days mud wrestling with an unruly topic for this column. Twice I had more than a thousand tortured words on the screen, went upstairs for a break, and came back to Ctrl-Shift-A-Delete. But Anthony Tommasini, music critic for The New York Times, came to my rescue with his article under the headline, “Why Do Pianists Know So Little About Pianos?,” published November 12, 2020. This article was born as the outbreak of COVID-19 got rolling in New York City last March and his piano needed tuning, but his apartment building was locked down and workers from outside were not allowed in except for emergencies. “An out-of-tune piano hardly seemed an emergency.”

He quotes the brilliant Jeremy Denk as not knowing “the first thing about piano technology.” Denk, whose playing I admire deeply and who like me is an alumnus of Oberlin College, had the same issue as Tommasini when his building locked down, but convinced the superintendent of his apartment building that because playing the piano is his profession, his tuner should be accepted as an essential worker. It worked.

Tommasini singles out Mitsuko Uchida as one prominent pianist who is an intimate student of piano technology. He quotes her as saying, “you get stuck when the weight is different key to key, the piano has been sloppily prepared, and the dampers have not been adjusted—or the spring in the pedal.” She went on, finding trouble when “the pin underneath the key [guide pin] is dirty, or the other pin in the middle of the mechanism [balance pin] is dirty, rubbing, or slurping.” I love the word slurping in this context.

Tommasini reminds us that orchestral players know more about their instruments than most pianists, and that unlike pianists, orchestral players own their instruments and can carry them with them between performances. Vladimir Horowitz traveled with his own piano, but then, Horowitz was Horowitz. You tell him “No.” Unusual among modern pianists, Mitsuko Uchida travels with her own piano. When Tommasini asked her if the institutions where she plays cover that cost, she said “usually not.” But she went on, “I have no excess otherwise. I don’t need country houses, expensive jewelry, expensive cars, special collections of whatever.” I suppose her usual fees cover that cost and still provide her with lunch money.

Tommasini concluded the column: Back at my apartment, the technician finally dropped by, tuned my piano, and made mechanical tweaks to a few of the keys. Afterward, it felt and sounded vastly better. I have no idea what was involved.

Press the key and the pipe blows.

The pipe organ is the most complex of all musical instruments. It is such a sophisticated machine that other musicians, including some world-renowned orchestral conductors, consider it to be unmusical. While a violinist or clarinetist can accent a note by applying a touch more energy, what a single organ pipe can do is all it can do. The organist can accent a note by tweaking the rhythm—a nano-second of delay can translate into an accent—or by operating a machine. A twitch of the ankle on the Swell pedal does it, so does coupling a registration to another keyboard with a soft stop so a note or two can be accented by darting to the other keyboard. The creative organist has a bag of tricks that bypass the mechanics and allow the behemoth to sing.

I have been building, restoring, repairing, servicing, selling, and relocating pipe organs for over forty-five years, and I know that many organists have little idea of how an organ works, so I thought I would offer a short primer. If you already know some or most of this, maybe you can share it with people in your church to help them understand the complexity. In that case, it might help people, especially those on the organ committee, understand why it is so expensive to build, repair, and maintain an organ.

Pipes and registrations

A single organ pipe produces a tone when pressurized air is blown into its toehole. The construction of the pipe is such that the puff of air, which lasts as long as the key is held, is converted to a flat “sheet” that passes across the opening that is the mouth of the pipe. The tone is generated when the sheet is split by the upper lip of the mouth. This is how tone is produced by a recorder, an orchestral flute, or a police whistle. Organ pipes that work this way are called “flue pipes,” and there are no moving parts involved in tone production. Reed pipes (trumpets, oboes, clarinets, tubas, etc.) have a brass tongue that vibrates when air enters the toehole: that vibration is the source of the tone.

Since each pipe can produce only one pitch, you need a set of pipes. We call them ranks of pipes, with one pipe for each note on the keyboard to make a single organ voice. Additional stops are made with additional ranks. There are sixty-one notes on a standard organ keyboard. If the organ has ten stops, there are 610 pipes. Pedal stops usually have thirty-two pipes.

The Arabic numbers on stop knobs or tablets refer to the pitch at which a stop speaks. 8′ indicates unison pitch because the pipe for the lowest note of the keyboard must be eight feet long. 4′ indicates a stop that speaks an octave higher, 2′ is two octaves higher, 16′ is an octave lower. Some stops, such as mixtures, have more than one rank. The number of ranks is usually indicated with a Roman numeral on the stop knob or tablet. A four-rank mixture has four pipes for each note. The organist combines stops of different pitches and different tone colors to form a registration, the term we use to describe a group of stops chosen for a particular piece of music or verse of a hymn.

The length of an organ pipe determines its pitch. On a usual 8′ stop like an Open Diapason, the pipe for low CC is eight feet long, the pipe for tenor c° is four feet, for middle c′ is two feet, and the highest c′′′′ is about three inches. Every organ pipe is equipped with a way to make tiny changes in length. Tuning an organ involves making those tiny adjustments to hundreds or thousands of pipes.

Many organs have combination actions that allow an organist to preset a certain registration and recall it when wanted by pressing a little button between the keyboards (piston) or a larger button near the pedalboard to be operated by the feet (toestud).

Wind

When playing a piece of music on an organ, the little puff of air through each organ pipe to create sound is multiplied by the number of notes and the number of stops being used. Play the Doxology, thirty-two four-note chords, on one stop and there will be 128 puffs of air blowing into pipes. Add a single pedal stop to double the bass line and you will play 160 pipes. Play it on ten manual stops and two pedal stops, 1,384. A hundred manual stops (big organ) and ten pedal stops, 6,420, just to play the Doxology, a veritable gale.

Where does all that wind come from? Somewhere in the building there is an electric rotary blower. In smaller organs, the blower might be right inside the organ, in larger organs the blower is typically found in a soundproof room in the basement. The blower is running as long as the organ is turned on, so there needs to be a system to deal with the extra air when the organ is not being played, and to manage the different flow of air for small or large registrations. The wind output of the blower is connected to a unit that most of us refer to as a bellows. “Bellows” actually defines a device that produces a flow of air—think of a fireplace bellows. Before we had electric blowers, it was accurate to refer to the device as a bellows. When connected to a blower that produces the flow of air, the device has two functions, each of which implies a name. It stores pressurized air, so it can accurately be called a reservoir, and it regulates the flow and pressure of the air, so it can accurately be called a regulator. We use both terms interchangeably.

Between the reservoir/regulator and the blower output, there is a regulating valve. Sometimes it is a “curtain valve” with fabric on a roller that operates something like a window shade, and sometimes it is a wooden cone that seats on a big donut of felt and leather to form an air-tight seal. In either case, the valve is connected to the moving top of the reservoir/regulator. When the blower is running and the organ is not being played, the valve is closed so no air enters the reservoir. When the organist starts to play, air leaves the reservoir to blow the pipes, the top of the reservoir dips in response, the valve is pulled open a little, and air flows into the reservoir, replenishing all that is being used to make music by blowing pipes.

Weights or springs on the top of the reservoir regulate the pressure. The organ’s wind pressure is measured using a manometer. Picture a glass tube in the shape of a “U,” twelve inches tall with the legs of the “U” an inch apart. Fill it halfway with water, and the level of the water will be equal in both legs. With a rubber tube, apply the pressure of the organ’s wind, and the level of the water will go down on one side of the “U” and up on the other. Measure the difference and voilà, you have the wind pressure of the organ in inches or millimeters. It is common for the wind pressure to be three inches or so in a modest tracker-action organ. In a larger electro-pneumatic organ, the pressure on the Great might be four inches, six inches on the Swell, five inches in the Choir, with a big Trumpet or Tuba on twelve inches. The State Trumpet at the Cathedral of Saint John the Divine in New York City is on 100 inches. I used to carry a glass tube full of water into an organ, a risky maneuver. Now I have a digital manometer.

In a small organ, the blower typically feeds a single reservoir that regulates the flow and pressure and distributes the wind to the various windchests through wind conductors (pipes), sometimes called wind trunks. In larger organs, it is common to find a regulator in the basement with the blower, and big pipes that carry wind up to the organ where it distributes into various reservoirs, sometimes one for each keyboard or division. Very large organs have two, three, four, or more windchests for each keyboard division, each with its own reservoir. A large bass Pedal stop might have one reservoir for the lowest twelve notes and another for the rest of the stop. And speaking of big pedal stops, the toehole of the lowest note of something like a 16′ Double Open Wood Diapason can be over six inches in diameter. When that valve opens, a hurricane comes out.

Windchests

The organ’s pipes are mounted on windchests arranged in rows on two axes. All the pipes of one rank or stop are arranged in rows “the long way,” and each note of the keyboard is arranged in rows “the short way.” The keyboard action operates the notes of the windchests, and the stop action determines which sets of pipes are being used. Pull on one stop and play one note, and one pipe plays. Pull on five stops and play a four-note chord, and twenty pipes play. In a tracker-action organ or an electric-action organ with slider chests, the keyboard operates a row of large valves that fill a “note channel” when a note is played and a valve opens. The stops are selected by sliders connected to the stopknobs, which have holes identical to the layout of the holes the pipes are sitting in. When the stop is off, the holes do not line up. When the stop is on, they do, and the air can pass from the note channel into those pipes sitting above open sliders.

It is common in electro-pneumatic organs for there to be an individual valve under every pipe. There is an electric contact under every note on the keyboard, a simple switch that is “on” when the note is played. The current goes to the “primary action” (keyboard action) of the windchest. The stops are selected through various devices that engage or disengage the valves under each set of pipes. When a note is played with no stops drawn, the primary action operates, but no pipe valves open. The stopknobs or tablets have electric contacts similar to those in the keyboards. When a stop is turned on and a note is played, a valve opens, and a pipe speaks.

We refer to “releathering” an organ. We know that the total pipe count in an organ is calculated by the number of stops and number of notes. An organ of average size might have 1,800, 2,500, 3,000 pipes. Larger organs have 8,000 or 10,000 pipes, even over 25,000. The valves under the pipes are made of leather, as are the motors (often called pouches) that operate the valves. Releathering an organ involves dismantling it to remove all the internal actions, scraping off all the old leather, cutting new leather pieces, and gluing the motors and valves in place with exacting accuracy. The material is expensive, but it is the hundreds or thousands of hours of skilled labor that add up quickest.

It’s all about air.

We think of the pipe organ as a keyboard instrument, but that is not really accurate. A piano’s tone is generated by striking a string that is under tension and causing it to vibrate. That is a percussion instrument. The tone of the pipe organ is generated by air, either being split by the upper lip of the organ pipe or causing a reed tongue to vibrate. The organ is a wind instrument. When we play, we are operating machinery that supplies and regulates air, and that controls the valves that allow air to blow into the pipes. When I am playing, I like to think of all those valves flapping open and closed by the thousand. I like to think of those thousands of pipes at the ready and speaking forth when I call on them like a vast choir of Johnny-One-Notes. I like to think of a thousand pounds of wood shutters moving silently when I touch the Swell pedal. I believe my knowledge of how the organ works informs my playing.

A piano is more intimate than a pipe organ, though technically it is also played by remote control as a mechanical system connects the keys to the tone generation. I am not surprised, but I am curious why more pianists do not make a study of what happens inside the instrument when they strike a key. I believe it would inform their playing. A clarinetist certainly knows how his tone is generated, especially when his reed cuts his tongue.

I have always loved being inside an organ when the blower is turned on. You hear a distant stirring, then watch as the reservoirs fill, listen as the pressure builds to its full, and the organ transforms from a bewildering heap of arcane mechanical gear to a living, breathing entity. I have spent thousands of days inside hundreds of organs, and the thrill is still there. 

That’s about 1,800 words on how an organ works. My learned colleagues will no doubt think of a thousand things I left out. I was once engaged to write “Pipe Organs for Dummies” for a group of attorneys studying a complex insurance claim. It was over twenty-five pages and 15,000 words and was still just a brief overview. Reading this, you might not have caught up with Mitsuko Uchida, but you’re miles ahead of Jeremy Denk.

A postscript

In my column in the November 2020 issue of The Diapason (pages 8–9), I mentioned in passing that G. Donald Harrison, the legendary president and tonal director of Aeolian-Skinner, died of a heart attack in 1956 while watching the comedian-pianist Victor Borge on television. The other day, I received a phone message from James Colias, Borge’s longtime personal assistant and manager, wondering where I got the information. I have referred to that story several times and remembered generally that it was reported in Craig Whitney’s marvelous book, All the Stops, published in 2003 by Perseus Book Group. Before returning Colias’s call, I spoke with Craig, who referred me to page 119, and there it was.

I returned Mr. Colias’s call and had a fun conversation. He told me that he had shared my story with Borge’s five children (now in their seventies). He also shared that when Victor Borge was born, his father was sixty-two-years-old, so when he was a young boy, he had lots of elderly relatives. His sense of humor was precocious, and when a family member was ailing, he was sent to cheer them up. Later in life, Borge said that they either got better or died laughing. I guess G. Donald Harrison died laughing.

Photo: Tracker keyboard action under a four-manual console, 1750 Gabler organ, Weingarten, Germany. (photo credit: John Bishop)

Current Issue