Skip to main content

The COLLAPSE Project

Stopping Corrosion in Ancient Organ Pipes

Hans-Erich Laukhuff, translated by Richard Houghten

Born in 1944, Hans-Erich Laukhuff studied in Weikersheim and in Easbourne, England. After apprenticeships with the family firm and at Casavant Frères, Mr. Laukhuff earned the Master Organbuilder Certificate from the organbuilders’ school in Ludwigsburg in 1970. The following year he assumed responsibility for the Laukhuff firm as fourth-generation co-director. Hans-Erich enjoys reading, organ music (both classical and theatre), and discovering how machines work, even if he can’t put them back together.
<br><br>
Born in 1943 in Detroit, Michigan, Richard Houghten studied psychology and physics at the University of Michigan and apprenticed in organ building with Dr. Robert Noehren. He joined the staff of Aug. Laukhuff as North American representative in 1989 and maintains contact with a majority of Canadian and U.S. organ builders. As an independent consultant, Houghten assists builders in the design and application of solid-state equipment. Interests include travel, writing, music and telephony.

Default

Tin and lead, both easily processed materials, have always been the metals of choice for organ builders. Organ pipes made from tin alloy are favored not only for their visual beauty but also for their mechanical and acoustical properties as well as for their longevity. It has recently been discovered that otherwise well-preserved pipes from the 17th century are suddenly showing signs of serious corrosion.

Until about 80 years ago, metal was more expensive than labor. It was therefore common practice to recycle Sn-Pb alloys in the construction of new pipes. Old pipes were sent to the melting pot along with scraps from any available source. Even virgin smelter metal showed traces of foreign elements because the techniques needed to produce pure metals had not yet been developed.

Occasionally, the presence of foreign trace metals had the advantageous effect of creating hard, somewhat creep-resistant alloys. Many pipes made with such alloys have survived. Whether these were the result of coincidence or of specific knowledge remains speculation. However Dom Bédos de Celles’ 1770 treatise, L’Art du Facteur d’Orgues, provides detailed instructions for the production of good pipe metal. Until well into the middle of the 20th century, organ pipes were often produced from scrap metal alloys and showed corrosion damage after only a few decades. Presumably similar patterns existed in earlier centuries. When corrosion appeared, instruments were either rebuilt or simply replaced. Only the very best survived.

The famous organ of St. Jakobi, Lübeck, dates back to the year 1467 and provides invaluable insight into the music of the Renaissance and the early Baroque. It has been known as the “Stellwagen Organ” since the 17th-century rebuild by the organ builder of that name. In 1992, it became apparent that the large pipes, made of nearly pure lead, have been gradually losing their voice. Corrosion has taken the form of small holes in the pipe metal. Other valuable organs like L’Aquila north of Rome and Oegstgest north of The Hague are also suffering from corrosion, while on the other hand many organs from the same period show no evidence of corrosion.

Many physical illnesses are preceded by an incubation period. Perhaps the same may be true of pipe metal corrosion. Although the affected organs remain in their original locations, the environment within their buildings may have changed. Often, interior restoration involves the application of chemicals such as acid, lye, ammonia, thinners, etc. Renovated walls, ceilings and floors may incorporate new materials that introduce, for example, acetic acid from new oak. Stain and corrosive fluids, in conjunction with high humidity, can promote lead corrosion even in relatively new pipe metal. Newly installed heating systems can create fluctuations in temperature and humidity and can generate dew points at the building walls and even within the organ. With almost no ventilation provided in ancient church buildings, relatively little exchange of air is possible. Conversely, today’s modern heating and ventilation systems can exchange the air in a whole room within a short time, including that within the organ.

With increasing tourism, more dust, humidity and carbon dioxide is carried into venerable old church buildings. Air currents carry charged, sooty dust particles to the pipes, where they precipitate with the vapor of the visitors and moisture at the dew point to produce a light chemical cocktail. This, together with increased levels of carbon dioxide, can attack pipe metal. Organ builders are all too familiar with the carcasses of dead flies, bats and birds in organs. Their excrement on pipes is a common cause of corrosion. Even the droppings of flies and spiders can be so aggressive that a nucleus for corrosion can form under supportive environmental conditions.

Techniques have been developed to stop corrosion in organ pipes made of tin. The pipes are cleaned and placed into a neutralizing liquid, then into a dilute electrolyte solution. Within the solution, a sheet of austenitic steel is connected to the anode of a power supply, while the organ pipe is connected to the cathode. Under the flow of electric current, the oxidized coating of the tin surface is removed, revealing the naked metal beneath. This process has been applied to the 99.5% tin façade pipes of the 1743 organ in the Cathedral of Dijon.

Lead organ pipes exhibit a different damage profile than those of tin. Environmental conditions such as those described above are assumed to be the cause of damage. A cure will likely be more difficult to find, since the corrosion process of lead involving lead white or lead acetate is not presently reversible.

Lead (II) acetate, commonly called salt of saturn, lead white, lead carbonate or sugar of lead, is a solid, colorless, white solid that was used by the Romans to sweeten wine. It was also known as the Viagra of antiquity. Unfortunately, the price for excessive consumption was the beginning of infertility. Perhaps this is why the Romans were the first to have adopted children.

In 300 BC, Theophrast described the production of lead white. In oxidation rooms, up to ten tons of lead plates were placed in stone pots packed with oak bark and horse dung. The heat of the dung, in conjunction with the acetic acid of the bark and carbon dioxide in the air, caused the lead to disintegrate into a white powder (lead white) in only four weeks. In ancient times, lead white was used for makeup and, until the 20th century, as pigment in paint. When heated, lead white first turns red (“Massicot”), then yellow. When sulphur is introduced, black lead sulphide results; we know it as graphite.

As an apprentice in organ building, and later in the Masters’ course, the writer became familiar with tin plague or “tin pest.” Teachers explained the chemical reactions that convert beta to alpha tin, and the terrible, irreversible damage that results. In the almost 46 years of his career as an organ builder, the author has seen many types of damage to organ pipes, but true tin plague could almost never be verified. The first pipe with confirmed tin plague was shown to the author in Estonia in 2000. Sometimes damage by saltpeter (potassium nitrate, often found in fertilizers) or other corrosive agents has been attributed to tin plague in order to stress the severity of a problem. Indeed, damage by such corrosive agents can be just as devastating, even though not actual tin plague.

Corrosive damage to organ pipes is increasing. This is undisputed, and some of the famous historic organs of Europe are suffering from it. Within the span of only a few years, ancient organ pipes have suddenly exhibited frightening signs of disintegration. Organ builders and curators are struggling to understand the phenomenon and to find a means of rescuing these instruments, preserving their unique sound portraits and preventing such damage in the future.

Since there had been little research into this issue, project COLLAPSE has been established and has been funded by the EU in Brussels with an initial grant of 900,000 euros. COLLAPSE (Corrosion of Lead and Lead-tin Alloys of Organ PipeS in Europe) is headquartered at the GOArt Centre in Göteborg, Sweden (www.goart.gu.se/collapse/). The University of Göteborg Department of Inorganic Environmental Chemistry, as well as the University of Bologna Metallurgic Institute, will assist in the research. Although COLLAPSE deals mainly with lead corrosion, there is also awareness of tin corrosion and tin plague, and these may become the subjects of future projects.

It is planned that the lead pipes of the St. Jakobi Stellwagen organ be coated with protective resin in order to close the small holes that have developed in the pipe metal. The resin coating would also protect the metal from further damage. Artificially produced resins would be used on a temporary basis until a cure or a more permanent remedy can be found. Modern principles of monument conservation require that any work done on original materials be reversible. Therefore any such resin that might be applied now must be removable without the damaging effects of solvents. This leaves open the possibility that new techniques and better understanding might allow restoration to near original condition at some future time.

It is hoped that after the EU funds have been expended, new knowledge and techniques to resolve these problems will have been developed and that our valuable cultural heritage will be preserved for future generations.

Related Content

Cover feature

Default

Taylor & Boody Organbuilders, Staunton, Virginia

Goshen College, Goshen, Indiana

About the organ.

Designing an organ for Rieth Hall at Goshen College was a
pleasure. The opportunity to place the organ in the traditional location, high
in the rear gallery, was ideal both visually and aurally. The form and
proportions of the hall, with its austere yet warm and inviting interior,
called the organbuilder to respond with similar clarity and restraint. The
ample height of the room suggested a plain, vertical configuration of the
instrument, on which natural light from the clerestory windows would fall
gently. Everything about the hall spoke of its solid construction and honesty
of materials, qualities that we strive to reflect in our organs. Likewise the
acoustical properties of the hall, so warm and reverberant and at the same time
intimate and clear, allowed the organ’s tone to develop freely without
being forced. The result is an endearing musical instrument that is
aesthetically inseparable from the space in which it stands.

Initial inspiration for the Goshen case came from the organ
built by David Tannenberg in 1774 for Trinity Lutheran Church in Lancaster,
Pennsylvania. While only the case and façade pipes of that lovely
instrument have survived, they constitute the finest example we have in our
country of south German case architecture from the 18th century.
Tannenberg’s use of the double impost, with its Oberwerk division
gracefully placed as a reflection of the Hauptwerk below, was typical of organs
in his native Saxony and Thuringia. Other exterior influences from that time
and place include the two swags that bracket the center tower, and the broad
lower case that supports the full width of the impost and omits the spandrels
common to earlier styles. Apart from its simple springboard moldings, the
Goshen case is relatively flat and plain by comparison with its historical
counterparts. Its only bold three-dimensional element is the polygonal center
tower. The small pointed towers in Tannenberg’s design are here merely
implied by the V-shaped arrangement of foot lengths in the tenor fields. The
use of six auxiliary panels to raise the smaller pipe feet above the impost
moldings adds interest to the design. The considerable height of the lower case
was determined by the need for a passageway over the 2-foot concrete riser
behind the organ. This height gave space between the console and impost for the
eventual inclusion of a small Brustwerk with several stops for continuo
accompaniment. Cabinets for music storage are built into the back on both sides
of the lower case.

Another aspect of the design reminiscent of 18th-century
south German traditions is the position of the windchests in relation to the
action. The two windchests of the Hauptwerk are spaced apart from the center of
the case by the width of the keyboards. This leaves room for trackers of the
Oberwerk to reach their rollerboard without blocking access to the Hauptwerk
action and its pallets. It also provides optimum space for 8’ bass pipes
at the sides and leaves room for tuning the tenor pipes of the Hauptwerk with
only minimal obstruction by the Oberwerk rollerboard. The windchests for the
Pedal are located behind the case at the level of the impost, a placement that
Tannenberg could also have used.

Both the playing action and stop action are mechanical. The
manual keys are hinged at the tail and suspended from their trackers. There are
no thumper rails to hold the keys down, so they are free to overshoot slightly
when released, as is the case in traditional suspended actions. Trackers,
squares and rollers are all made of wood. There is no felt in the action. Keys
are guided by pins at the sides. Together these details combine to give a
feeling of buoyancy and liveliness reminiscent of antique instruments. The aim
is not so much to provide a light action as to arrive at one having the mass
and friction appropriate to the size and character of the organ. Such an action
may need occasional minor adjustment of key levels with changes in humidity,
but this is a small price to pay for the advantages gained over more sterile
modern alternatives. 

Wind is supplied by two single-fold wedge bellows (3’ x
6’) fed by a blower located in a small room below the organ. Natural
fluctuations of the wind pressure in response to the playing contribute to the
lively, singing quality of the organ’s sound. A wind stabilizer can be
engaged when unusually heavy demands on the wind system call for damping of
these fluctuations. The organ’s single tremulant is made in the old-fashioned
beater form. On seeing a tremulant puffing away in one of our organs, a
Japanese friend remarked that the organ was laughing! It is useful to think of
an organ’s wind as its breath and the bellows as lungs, for the
instrument’s appeal is closely tied to our perception of its lifelike
qualities. 

The tonal character of an organ is rarely revealed by its
stoplist. This is particularly true in an instrument of only twenty-four stops.
Once the builder accepts the constraints of a given style and the essential
registers have been chosen, there is usually little room or money left to
include stops that would make a modest design appear unique on paper.
Fortunately for the art, the musicality of the organ is not bound by its
stoplist; rather, it is determined by a host of other complex factors. These
can be partially defined in the technical data of pipe scaling and
construction, general design parameters, materials and the like, but in reality
much more rests on the elusive criteria of experience, skill and taste of the
builder. Taken together this means that each new organ, albeit small, presents
fresh opportunities for artistic expression. It is important that all the pipes
speak promptly, be they reeds or flues, except in the case of strings, which
gain charm from their halting speech. It is less important that the pipes
produce precisely the same vowel sounds from note to note, for here variety
adds refreshing character and interest to the organ.

At Goshen we chose to voice the 8’ Principal to be
somewhat brighter and richer in overtones than has been our wont. This was
achieved by giving the pipes lower cutups than was customary in German and
Dutch organs of the 17th century and before. The five distinctly different
8’ flue stops on the manuals deserve special mention. Although all
followed scaling patterns we have used frequently in the past, when voiced they
proved to be unusually satisfying, particularly in combination with each other.
Whenever the 16’ Bordun is used with them a magical new dimension is added
to the sound. If, for example, one draws the Bordun with the Viol da Gamba, the
effect is that of a quiet 16’ Principal. Used with the Spillpfeife the
Bordun reverts to its role as a flute. In an organ of this size it is crucial
that every stop work as well as possible with every other. Following south
German practice, both 8’ and 4’ flutes on the Hauptwerk are made in
the same form. This duplication of flutes within the same family was not the
custom in the north, where lower pitched flutes were usually stopped and those
above them progressively more open. The Oberwerk configuration at Goshen with
its two stopped 8’ registers and partially open 4’ Rohrflöte is
typical of the northern tradition. We look forward to the day that the 16’
Violonbass with its cello-like speech can be added to the Pedal.
style="mso-spacerun: yes"> 

The distinctive musical effect of the Goshen organ is
strongly colored by the use of the recently released Bach-Lehman temperament
described in the accompanying article. Because the completion of the organ in
February coincided with the publication in Early Music of Bradley
Lehman’s treatise on J. S. Bach’s temperament, we chose to tune the
organ according to his plan. Here was the ideal opportunity to try the
temperament on an organ built in Germanic style and at the same time to honor
Dr. Lehman as a distinguished Goshen alumnus for his work in this field. The
experiment has been a fascinating one. It has provided a place to hear
Bach’s organ music as we have not heard it before. We are honored to have
played a part in translating the dry mathematical numbers of this temperament
into the vibrant sound of the organ. 

With few exceptions the many parts of the organ were
constructed from raw materials in our Virginia workshop. Through the skills of
each craftsman the design moved from an idea to paper and then through raw wood
and metal into a large and impressive object. Note by note the tonal picture
has been filled in by voicing and tuning until in the end we experience a new
instrument with an identity all its own. We hope that it will give pleasure to
those who play and hear it far into the future.

--George Taylor

The organ project at Goshen College

“Dienlich, Ordentlich, Schicklich, Dauerlich”

In 1999 we were asked by the organ consultant for Goshen
College, Roseann Penner Kaufman, to make a proposal for the new Goshen College
Music Center. As with any new project, I went to Goshen full of excitement at
the promise of participating in what was to be a spectacular project. My
enthusiasm was short-lived when I saw the design for the recital hall. It was a
standard fan-shaped, sloped-floor, small college recital hall, with theatre
seats and carpet in the aisles. The space for the organ was planned in a niche
at the back of the stage. The design would have been fine for small chamber
recitals, but it was not a proper home for an organ. The prospects for the
organ looked bleak. We would not have felt productive or inspired. We always
say that the room is more than half the organ. I took a deep breath and told
the Goshen committee what I thought of the plan. The committee listened and
asked us to offer suggestions on how the recital hall might be designed to work
best with the musical programs envisioned for this space.

I returned to Staunton eager to develop a plan. One of the
first things I did was to research the Mennonite Quarterly Review for articles
describing historical Anabaptist worship spaces. I hoped that the essence of
these rooms would lead me to an aesthetic that would tie the new hall to the
old tradition, which would, in turn, also be good for music, especially the
organ. My research acquainted me with four German words used to express the
qualities of the historical spaces: dienlich, ordentlich, schicklich and
dauerlich--serviceable, orderly, fitting and lasting. I also found prints
of the interiors of some of these churches. Rectangular in shape with open
truss timber roof framing, clear glass windows, galleries on several sides,
rough stone floors, moveable chairs, unadorned, honest and powerful, these
spaces had all the qualities that I was looking for. They also had enduring
musical-acoustical qualities and so many are used today for concerts.

The simple sketch that I made went first to the Goshen organ
committee who, led by Doyle Preheim and Chris Thogersen, embraced the plan.
Then the concept went to Rick Talaske and his team of acousticians. They
transformed the plan into practical geometry and surface treatments to make the
space an acoustical success. Mathes Brierre Architects took the acoustical plan
and translated it into a visual design that evokes the warehouse or
brewery-turned-church concept of the early Dutch Mennonite spaces. Schmidt
Associates worked through the technical details with Casteel Construction to
conceive the simple pre-cast concrete panels and graceful curved steel arches
that make the hall appealing in its architecture, superior in acoustical
performance and straightforward and durable in construction. There was creative
and sensitive work done by a Goshen group concerned with decor and furnishings.
The result is successful beyond our expectations. The collaboration of all the
partners made the project exceed the ability of any one of us.

Once the hall was underway, we scheduled a meeting at St.
Thomas Fifth Avenue in New York with a group from Goshen and Calvin and Janet
High from Lancaster, Pennsylvania. We had a great day in New York showing
everyone our organ in the gallery of St. Thomas. The Highs’ enthusiasm
for the St. Thomas organ and the Goshen Music Center paved the way for their
generous gift that underwrote the cost of the organ.

We realized that the floor area of Rieth Hall was small in
relation to the height. We saw that if there could be the addition of one more
bay to the length there would be significant improvement in the proportions of
the space and at least 50 more seats could be added. Again, the Goshen design
group supported our suggestion. At a time in the project when the building
committee was attempting to control costs and squeeze performance out of every
dime, they found the funds for this most important late addition.
style="mso-spacerun: yes"> 

I predicted at the time we were creating the designs for
Rieth Hall, that the unique qualities of this space would have something to say
to the Goshen students about music and worship. This prediction has been
realized. First, there is genuine enthusiasm for a cappella singing in Rieth
Hall, encouraging this wonderful Mennonite tradition. Second, there has been a
spontaneous seizing of the space by the students for their own student-directed
Sunday worship. In this age of searching for the right path in worship and
liturgy, of debating the influence and appropriateness of mass media and
popular music for worship, we have built something at Goshen College that
reaches across the span of time to those Mennonite roots. Led by the seemingly
old-fashioned qualities of dienlich, ordentlich, schicklich and dauerlich, we
have made a  music space and organ
that inspire and excite us to make music and to celebrate and serve our God and
Creator.

Wood and the Goshen organ

The traditional pipe organ is a wooden machine. Early on in
our careers as organ builders we realized that getting control over our
materials in both an aesthetic and technical sense was essential to our success
as organ makers. Our first path was to make friends with our neighborhood
sawmillers. One of these was an octogenarian whose experience reached back to
horse logging and steam power. He taught us the value of long, slow, air-drying
of lumber. He also knew the old traditions of sawing, how to take the tension
out of a log, how to saw through the middle of the log and keep the boards in
order so that the cabinetmaker could match the grain. He remembered the methods
of quarter sawing that impart the most dimensional stability to the boards and
in oak bring out the beautiful fleck of the medullary rays. We have built our
own sawmill based on a portable band saw. For quarter sawing, we have built a
double-ended chain saw that can split logs up to 60 inches in diameter. The
half logs (or quarters in extremely large timber) are then aligned on our band
saw and sawn in a radial fashion into boards. This lumber is then air-dried for
a number of years. At the end, we put the wood in our dry kiln and gently warm
it up to stabilize the moisture content at 8% to 10%.

Oak is the traditional wood of Northern European organ
building so it was natural for us to choose white oak for the Goshen organ. We
have long admired the Dutch and German organs dating back to the 16th century.
The earliest organs show only the natural patina of age and no finish; the
concept of finishing wood as in varnishing or oiling came well into the 18th
century. We followed this earlier practice for the Goshen organ. The oak has
been hand-planed to a smooth polish, much smoother than can ordinarily be
produced with sanding. The hand-planed wood will resist dirt. We feel there are
also musical benefits from using wood in its natural state. The case and
carvings together with all the interior parts transmit sound energy and reflect
and focus the sound of the pipes. Also, the open pores and surface
imperfections of the natural wood have an effect on the sound reflection.

Another aspect of wood use in historic organs is how
efficiently the old builders utilized their wood. Before the age of machinery,
cutting, transporting and converting timber to sawn, dried lumber ready for use
was costly. The best wood was always used for the keyboards, playing action,
wind chests and pipes. The next selection went to the most visible parts of the
case, especially the front of the organ. The rest was used for carvings, heavy
structural members, walkways, bellows framework and back panels. Some of this
wood shows knots, cracks and other defects that might offend our modern sense
of perfection. However, in addition to demonstrating good wood utilization, the
varying density and differences in surface texture of these so-called defects
may indeed benefit the music. How we perceive the sound of an organ is a very
complex and subtle equation. This is one of the wonderful aspects of the real
pipe organ that differentiates it from the sterile sound of the electronic
substitute. We feel it is good stewardship to apply the hierarchy of selection
as practiced by the old masters. We try to use all the wood, through careful
selection, with thoughtful conservation of a vanishing resource.

--John Boody

Acoustic design of Rieth Recital Hall at Goshen College

In 1998, the design team of design architect Mathes Group
(now Mathes Brierre Architects), architect of record Schmidt Associates and
acoustician The Talaske Group (now Talaske) began preliminary work on a new
music education and performance building for Goshen College’s campus.
This project was the College’s greatest building investment to date and
they were determined to do things right . . . with a very modest budget. The
Recital Hall (now Rieth Recital Hall) was slated to house a new tracker organ
of exceptional quality. As acousticians, we offered some general planning
recommendations--not the least of which was a 50-foot ceiling
height--and recommended that the organ builder be hired as soon as
possible.

Enter John Boody of Taylor & Boody, organ builders from
Virginia. John energized the subsequent meetings with some profound advice that
proved to set the final direction for the space. He moved our thinking from a
“fixed” seating configuration to a flexible arrangement based on a
flat floor where seats can face either end of the room. This unique concept
facilitated the accommodation of a conventional “recital hall” or
assembly arrangement with musicians or presenters on a small stage. The cleverness
of the concept is the seats can be turned to face the opposite direction in the
room, offering a classic organ recital arrangement. Furthermore, John
recommended that the proportions of the room would be better served if
lengthened by adding another bay of structure. These fundamental planning ideas
changed the direction of the design in perpetuity.

We embraced these new directions yes">  and identified the many other room acoustics design features
that would support the client’s needs. The 50-foot ceiling height remained,
and we worked with the architects and construction manager to render the room
as a sound-reflective concrete enclosure, embellished with wood. The goal was
to maintain the warmth of sound created by the organ. Within the “theatre
planning” process, we guided and exploited naturally occurring
opportunities for introducing sound diffusing shaping to reflect low- and
mid-pitched sound in all directions--by introducing one side balcony and a
rear balcony, recesses from circulation paths and recesses created by
deeply-set windows. We recommended deliberate articulation of the walls to
diffuse mid- and high-pitched sound. Wood surfaces were detailed to minimize
absorption of low-pitched sound. Retractable velour curtains and banners were
recommended in abundance and specified by Bob Davis, theatre consultant.
Architecturally, curtain and banner pockets were created so the sound-absorbing
materials could be retracted completely on demand. These features make possible
a broad “swing” of the sound of the room from very reverberant for
choral and organ performance to articulate for assembly events or amplified
music performance. Fundamental to the acoustic design was the need for silence.
This was accomplished by structural discontinuities in the building (acoustic
isolation joints) and the proper placement and design of heating and air
conditioning systems.

Within their mission statement, Goshen College states:
“Musical expression is a human manifestation of the divine impulse and,
as such, serves as a window into the individual soul, a bridge between human
beings and a means of corporate religious experience.” In light of the
students adopting the Rieth Recital Hall for their weekly convocations and the
many other uses, we are pleased to say the happy story continues!

--Rick Talaske

Bach temperament

This organ is the first since the 18th century to use Johann
Sebastian Bach’s tuning, as notated by him in 1722 on the title page of
the Well-Tempered Clavier. This tuning method is a 2004 discovery by Bradley
Lehman. The article about this discovery is published in the February and May
2005 issues of Early Music (Oxford University Press), and further details are
at <www.larips.com&gt;.

The layout, dividing the Pythagorean comma, is:

F-C-G-D-A-E = 1/6 comma narrow 5ths;

E-B-F#-C# = pure 5ths;

C#-G#-D#-A# = 1/12 comma narrow 5ths;

A#-F = a residual wide 1/12 comma 5th.

In this tuning, every major scale and minor scale sounds
different from every other, due to the subtle differences of size among the
tones and semitones. This allows music to project a different mood or character
in each melodic and harmonic context, with a pleasing range of expressive
variety as it goes along. It builds drama into musical modulations.
style="mso-spacerun: yes"> 

The result sounds almost like equal temperament, and it similarly
allows all keys to be used without problem, but it has much more personality
and color. In scales and triads it sounds plain and gentle around C major (most
like regular 1/6 comma temperament), mellower and warmer in the flat keys such
as A-flat major (most like equal temperament), and especially bright and
exciting in the sharp keys around E major (like Pythagorean tuning, with pure
fifths). Everything is smoothly blended from these three competing systems,
emerging with an emphasis on melodic suavity.

The following chart shows the relative size of each major
third, resulting from each series of the intervening four fifths. This system
of analysis is from the 1770s, published in the theoretical work of G. A. Sorge
who was a former colleague of Bach’s. The intervals having higher numbers
sound spicier, more restless. In this measurement, a value of 11 would indicate
a major third that is one syntonic comma too sharp (a “Pythagorean major
third,” having been generated by four pure fifths).
style="mso-spacerun: yes"> 
A pure major third would be represented
here as 0.

Bb-D    6
style='mso-tab-count:1'>            
D-F#
    7
style='mso-tab-count:1'>            
F#-A#
8

Eb-G    7
style='mso-tab-count:1'>            
G-B
      5
style='mso-tab-count:1'>            
B-D#
   9

Ab-C    8
style='mso-tab-count:1'>            
C-E
       3
style='mso-tab-count:1'>            
E-G#
   10

Db-F     9
             F-A
       3
style='mso-tab-count:1'>            
A-C#
   9

Equal temperament, as opposed to the variety shown here, has
a constant size of 7 in all twelve of the major thirds.

In functional harmony, the Bach tuning sets up especially
interesting contrasts within minor-key music. The key of A minor has the
plainest tonic juxtaposed with the most restless dominant. F minor, a major
third away, has the opposite relationship: troubled tonic, calm dominant. And
C# minor has the average character between these behaviors, where the tonic and
dominant are both moderately energetic. 

In major-key music, the tonics and dominants have characters
similar to one another. The sizes of major thirds change by only 1, 2, or 3
units from each key to its neighbors, moving by the circle of fifths (through
typical subdominant/tonic/dominant progressions). Any change of Affekt is
therefore gradual and subtle, as if we never really leave the home key
altogether but it feels a little more or less tense as we go along.

In any music that modulates more quickly by bypassing such a
normal circle-of-fifths cycle, the contrasts are momentarily startling. That
is, the music’s dramatic harmonic gestures become immediately noticeable,
where the major thirds have changed size suddenly from one harmony to the next.
This comes up for example in the Fantasia in G Minor (BWV 542), Gelobet seist
du, Jesu Christ (BWV 722), and the fourth Duetto (BWV 805), and especially in
music by the Bach sons.

This system turns out to be an excellent tuning solution to
play all music, both before and after Bach’s. It is moderate enough for
complete enharmonic freedom, but also unequal enough to sound directional and
exciting in the tensions and resolutions of tonal music.

A recording will be ready for release this summer, including
music by Bach, Fischer, Brahms, et al.

--Bradley Lehman

A brief history of the organ in the Mennonite Church

Some people might find it unusual to find such a remarkable
organ in a Mennonite college. Aren’t the Mennonites those folks with the
buggies and suspenders? It is true that some Mennonite congregations still take
literally founder Menno Simons’ caution against the organ as a
“worldly” invention, but most, especially in the last fifty years,
have embraced it as a vital contributor to the musical and worship life of the
community. 

The Mennonite Church has its beginnings in the 16th-century
Protestant Reformation. Because of persecution, most of the early worship
services were held secretly, in homes or out-of-the-way places. Mennonites also
believed that the true church existed in small, simple gatherings; therefore,
it was uncommon for early Mennonites to even set aside a separate building for
worship. 

Two hundred years after the beginning of the movement,
churches in Germany and the Netherlands had grown to the point of meeting in
dedicated buildings, and by the 1760s several in urban areas had installed pipe
organs. It was another two hundred years, however, before organs became common
in the Mennonite conference that supported Goshen College. Even now, the organ
is not necessarily assumed to support congregational singing, but contributes
other service music. Organ study is now offered at all of the Mennonite Church
USA-affiliated colleges, and the new Taylor & Boody organ at Goshen will
certainly have a profound impact on the future of worship and organ study
throughout the denomination.

--Roseann Penner Kaufman

Roseann Penner Kaufman, DMA, is adjunct instructor in organ
at Bethel College, N. Newton, Kansas, a four-year liberal arts college
affiliated with the Mennonite Church USA. She also serves as director of music
for Rainbow Mennonite Church in Kansas City, Kansas. Dr. Kaufman served as the
consultant to Goshen College for their organ project.

Specifications for Opus 41

Hauptwerk

16' Bordun (C-D# wood, rest metal*)

8' Principal (77% tin)

8' Spillpfeife

8' Viol da Gamba (77% tin)

4' Octave

4' Spitzflöte

3' Quinte

3' Nasat

2' Superoctave

IV-V Mixtur

8' Trompet

Oberwerk

8' Gedackt (99% lead)

8' Quintadena

4' Principal (77% tin)

4' Rohrflöte

2' Waldflöte

II Sesquialtera

IV Scharff

8' Dulcian

Pedal

16' Subbass (wood)

(16' Violonbass) space prepared

8' Octave

4' Octave

16' Posaune (C-B wood, rest 99% lead)

8' Trompet (99% lead)

Couplers

Oberwerk / Hauptwerk

Hauptwerk / Pedal

Oberwerk / Pedal

Tremulant to entire organ

Mechanical key and stop action

Compass: manual 56 notes C-g''', pedal 30 notes C-f'

Lehman-Bach temperament

Interior metal pipes of hammered alloys

*All unmarked metal alloys of 28% tin, 72% lead

Case of solid white oak

Windchests of solid oak, pine & poplar

Number of pipes: 1604

Wind pressure: 75mm

Wind stabilizer

The builders

George K. Taylor

John H. Boody

Bruce Shull

Emerson Willard

Christopher A. Bono

Kelley Blanton

Chris A. Peterson

Sarah Grove-Humphries

Robbie Lawson

Jeffrey M. Peterson

Larry J. Damico

Holly Regi

Thomas M. Karaffa

Bob Harris

Katie Masincup

Ryan M. Albashian

Kristin E. Boo

In the wind . . .

John Bishop

John Bishop is executive director of the Organ Clearing House

Files
webApr10p13-14.pdf (175.45 KB)
Default

A material world
It happens to me all the time. A word or phrase comes up in conversation and a song pops into my head. I can’t help it, and I’m often stuck with that song for days and days. The insipid nature of some of the songs startles me—how can I justify the use of my Random Access Memory on such drivel?

Five passengers set sail that day…
polished up the handle of the big front door…
no gale that blew dismayed her crew…
the soda water fountain…
many a mile to go that night before he reached the town-oh, the town-oh, the town-oh…

And let’s not forget the jolly swagman, the girl named Fred, the mule named Sal, and the glorious, sonorous, stentorian Pirate King. (Dear readers, if you know all of these songs, let me know—honor system—and I’ll send you an autographed manuscript of this column.)
We are in the last few weeks of a busy and exciting organ installation. I’m spending a lot of time with supply catalogues, shepherding the flow of materials to the jobsite, trying to keep ahead of the energetic crew as we navigate the final glide-path. (The job is in New York City, and as I come and go, I drive along Manhattan’s western shore on the Henry Hudson Parkway. Speaking of free association, “glide-path” makes me think of Captain Sullenberger’s heroic goose-inspired glide-path over the George Washington Bridge, landing a US Airways jet on those choppy waters.)
But it’s the materials I’m thinking about these days, and I’m stuck with material girl… So sings the ubiquitous and peripatetic Madonna in a song I don’t know. The fact that I don’t know the song doesn’t stop it from circling menacingly between my ears. Material Girl must be second only to Michael Jackson’s Bad in songs in which the highest proportion of the lyrics is the actual title. (You can find the complete words of both at www.azlyrics.com.) I spent $1.29 to download Material Girl from the lyrics is the actual title. (You can find the complete words of both at www.ilike.com as part of my research preparing for this column. (I’ve filed the e-mail receipt for tax purposes!)
My catalogues each have more than 3,000 pages and the consistency of bellows weights. They offer everything from sponges to forklifts, from welders to furniture polish, from pulleys to lubricants to fasteners to shelving to eyewash stations. A list gets shouted down from the organ loft, and a rattles-when-you-shake-it box arrives the next day.
As I unpack the boxes, I reflect on the huge variety of stuff that goes into a pipe organ. It’s part of what’s wonderful about the instrument. We use geological materials (metals and lubricants), vegetable materials (wood), animal materials (ivory, bone, leather, and glue), chemical materials (glues, solvents, finishes)—and I think most organ builders have intimate and personal relationships with many of them.

From the forest
Most organbuilding workshops include plenty of woodworking equipment. The overwhelming smells come from wood—an experienced woodworker can tell by the smell what variety of wood was milled last. It’s impossible to mix up the smell of white oak (burning toast) with that of cedar or spruce (grandmother’s closet). And the working characteristics of various woods are as different as their smells.
White oak is very popular among organbuilders. It can be milled to produce myriad grain patterns, it has great structural qualities, and it takes finishes beautifully. But it’s a difficult material to work with. In 1374 Geoffrey Chaucer wrote in Troilus and Criseyde, “as an ook cometh of a litel spyr [sapling].” We now say, “mighty oaks from little acorns grow,” referring to great things coming from small beginnings. The mighty oak tree is a symbol of strength and stability and of the witness of many passing generations. How many memoirs or novels include the enduring oak tree as the observer, commentator, and guardian of generations of family members?
There was a magnificent and massive oak tree in the yard of my great-grandmother’s house that was known as the “roller-skate tree” by generations of my family. It was so bulky and heavy that several of the major lower limbs had settled to rest on the ground—the ultimate climbing tree for kids, as you could simply walk from the grass to a great height. Some imaginative arborist conceived of building heavy iron-wheeled skids under those limbs so the natural motion of the tree would not harm them as they dragged on the ground.
As the white oak tree is such a massive presence, so it yields its beauty reluctantly. The rough-cut lumber is uncomfortable to handle. It’s heavy—the weight-per-board-foot is higher than most other woods. When the truck arrives from the lumberyard, you’re faced with an hour of heavy and prickly work. And when the mighty tree is felled and milled, the apparent inherent stability transforms into a wild release of tension. As the wood passes through the saw it twists and turns, scorching itself against the spinning blade, and producing the characteristic smell. (By the way, a French government website claims that master Parisian organbuilder Aristide Cavaillé-Coll was the inventor of the circular saw.)
As you look at a standing tree, you can tell a great deal about the wood inside. If the bark shows straight, even, perpendicular lines, you can assume that there’s plenty of nice, straight lumber in there. If the bark is twisted, spiraling around the tree, you know you’re going to be fighting for each useful board.
Red oak is a poor substitute for white oak. The grain patterns are not as attractive, and red oak doesn’t take finishes as well. And it’s not as strong. Cut a piece of red oak a half-inch square and four inches long. Put it in your mouth and blow through it into a glass of water. You can blow bubbles—there are longitudinal capillaries in the wood that deny it the structural strength of its mighty cousin. Try the same experiment with white oak and the sharp edges will cut your lips.
White oak saves its final insult: splinters. The hardness of the wood combines with that tendency to move to produce angry splinters. And like the woods from tropical rainforests whose survival depends on producing gallons of insecticide in the form of sap, there’s a chemical content to a piece of white oak that fosters festering—the wounds from the splinters easily get infected. So a contract for a new organ with a case made of white oak should include a supply of aloe-enriched hand lotion.
The opposite end of the hardwood spectrum is basswood. It’s from the genus Tilia and is also referred to as Linden, the source of Franz Schubert’s song, Der Lindenbaum. It’s a large deciduous tree, as tall as a hundred feet, with leaves as big as eight inches across. And the wood is like butter. It smells sweet coming through the saw, it is easy to mill straight, and once it’s straight it stays there. It’s ideal for making keyboards, because keyboards are about the last part of an organ where we can tolerate warpage. And it’s ideal for carvings, statues, and pipe shades. A sharp tool coaxes even and smooth shavings—you can’t call them chips. It reminds me of the butter molded into little pineapples in trying-to-be-fancy restaurants.
With all the pleasant qualities of basswood, it’s not very strong—no good for structural pieces—and it’s so soft that if you look at it wrong there will be a ding in the surface. While it looks beautiful unfinished, it does not have the attractive grain patterns we look for when we use clear finishes like stain, lacquer, or varnish. On the other hand, it takes paint and gold leaf very well indeed.
I place poplar right between white oak and basswood. It’s strong, relatively hard, mills and sands easily, and smells good. Its grain is not pretty enough to recommend it for use as casework with clear finish, and although poplar is essentially a white wood, it has broad swatches of dark olive-green heartwood. But all its other qualities make it ideal for use building windchests and other components, including painted cases.

From the farmyard
While woodworking is common to many arts and crafts besides organbuilding, leather (at least in any large volume) is more specific to our field. Besides its industrial uses (shoes, clothing, and car seats), leather is used only in small quantities. So, while there are plenty of skilled woodworkers producing furniture and household or office appointments like cabinets and bookshelves, organbuilders stand pretty much alone as large-scale consumers of leather. And those industrial users don’t care much about how long the leather will last. After all, except for the decades-old and beloved leather flight jacket, most of us don’t expect shoes, clothes, or car seats to last more than five or ten years.
Ten years would be a disastrously short lifetime for organ leather, and organbuilders have made effective and concerted efforts to ensure a good supply of leather, tanned according to ancient methods, that will have a long lifetime.
A busy organ shop routinely stocks the tanned hides of cows, horses, goats, and sheep. Cowhide can be produced with a hard slick finish (useful for action bearing points and rib belts on reservoirs) or as soft and supple material for small pneumatics and reservoir gussets (the flexible corner pieces). We also often use goatskin for those gussets. I think goatskin is tougher than cowhide, perhaps an opinion reflecting my comparison of scrappy pugnacious goats and relatively docile cows. Goatskin is supple even when it’s very thick, which makes it ideal for applications requiring plenty of strength and flexibility at the same time.
Horsehide is very strong, but it’s spongy and not supple at all, so its principal use is for gaskets between joints that we expect to be opened for maintenance of an organ. Cutting it into strips and punching out the screw holes prepares it for making gaskets for windchest bungs, removable bottom boards, and reservoir top panels. It’s a good idea to apply a light coating of baby powder or light grease (like Vaseline) to the leather before screwing down the panel to keep it from absorbing oils and resins from the wood, which act as unwelcome glue.
I use more sheepskin than anything else. Our supplier is equipped to plane it to various thicknesses, a process that produces splits as “useful waste.” The raw skin might be a tenth of an inch thick, and we might want leather for pouches and small pneumatics to be one or two hundredths of an inch thick. That leaves us with leather eight or nine hundredths thick, fuzzy on both sides, relatively inexpensive because it’s technically waste, and useful for plenty of things like light gaskets and stoppers of wooden pipes.
As I cut the hides of any of these creatures into organ parts, I’m aware of the animal’s anatomy. When a hide is laid flat on a workbench, you clearly see the neck and legs of the animal, and to make good reliable pneumatics you need to be careful of the natural stretching of the armpits, the belly, and the rump—those places where our skin grows in tight curves and stretches every time we move. When I cut long strips, I cut parallel to the spine to ensure relatively even thickness through the piece. If you cut a piece from belly-edge to belly-edge, it will go from thin to thick to thin again.
When releathering reservoirs, we cut miles of strips of leather or laminated rubber cloth that are around an inch-and-a-half wide. I remember keeping a dedicated straight piece of wood as a cutting surface and a long wooden straightedge as a rule for cutting these strips. I sharpened and honed my favorite knife as though I meant to shave with it. With that set-up, it took plenty of skill and care to produce straight pieces of material. The knife wanted to follow the grain of the wood, and after a few cuts my cutting board was scored, providing more opportunities for my knife to stray. Today, we have rubbery-plastic cutting surfaces, plastic and aluminum straightedges marked in inches or centimeters, and laser-sharpened rotary knives with retractable blades. With proper care, the cutting surface can be maintained blemish-free indefinitely. The knife blades are replaceable, and it’s easy to cut hundreds of near-perfect strips. All this special gear is available in fabric stores. I’m usually the only man in the store when I go in to buy replacement blades. I have to navigate aisles of unfamiliar stuff essential for quilting, sewing, decorating, scrapbooking (an activity described by a verb that can’t be more than a few years old), and countless other arts and crafts activities.
A recent side effect of this quest was my discovery of monster pipe-cleaners of every size and description, up to two feet long and an inch in diameter, perfect for stopping off pipes as I tune mixtures. Between those and the fantastic laser-sharpened cutting tools, I can’t imagine how I ever did organbuilding without fabric stores.
We’ve done forest and field—someday soon we’ll talk about mines and quarries. As the technology of tools develops, we are able to work with an ever-wider variety of metals. We’re used to the tin-lead alloys we use to make most of our organ pipes, but we find more steel and aluminum used for structural elements, action parts, even casework decoration. All the skills required to work this wide range of materials complement those skills related to the organ’s music—voicing, tuning, acoustic planning—and the planning of the projects in the first place—architecture, and yes, politics. Now there’s a subject for another day. 

Cover feature

Files
Default

Fratelli Ruffatti, Padua, Italy
Wesley Chapel, Elkton, Maryland

From the builder
Fratelli Ruffatti is mostly known in the United States for building large four- and five-manual instruments with electric action. Two five-manual organs have been completed in the past 15 months, and two four-manual organs are currently being manufactured in the Ruffatti workshop. Few people, however, know that the majority of instruments that the firm produces outside of the United States are of mechanical action.
In tune with the trends and ideas that were coming from across the Alps at the beginning of the 1960s, Ruffatti was among the first in Italy to restore the tradition of building pipe organs with suspended mechanical action. One of the most famous of these instruments is in northern Italy, installed in 1970 in the parish church of the small medieval city of Noale. It is not a huge instrument, numbering 27 stops and 35 ranks of pipes over two manuals, but it became quickly famous from the beginning as the concert instrument for the first Italian competition of young organists. It is still today the centerpiece of a quite famous concert series, involving big names among international organists.
Ruffatti is here presenting to the American organ community an instrument that is quite small, but of large significance. Everyone knows that ancient Italian organs were, for the most part, of small size—one manual, with a limited number of stops—but quite musical and versatile. Since our predecessors could not depend upon a large number of voices to produce variety, they refined their voicing techniques to the point that every sound could be combined with every other to produce the most versatility even within a very limited number of stops. This is the tradition that Italian organbuilders come from and that constitutes the inspiration for Fratelli Ruffatti even today, whether it may be applied to very large or, even more importantly, to small instruments.
The organ manufactured for Wesley Chapel of Elk Neck is a good example of how a very small instrument can be pleasing and effective in spite of its very limited size. With only one manual and a total of six stops, including the Pedal, it is difficult to imagine any kind of versatility at all. However, a few special ingredients grant this instrument a real flexibility: the divided stops, the composition of the Mixture and, above all, the voicing techniques.
Splitting the stops in bass and treble is an old practice in ancient organs, as we all know, and it allows the organist to create two different tonal “platforms” within the same manual. In this case, both the Principal and the Spitzflöte are divided between C and C# in the middle of the keyboard, thus increasing the number of possible combinations. The Mixture, whose composition is shown below, has been designed in such a way that no “double pitches” occur when combined with the 2′ Fifteenth. The Fifteenth and Mixture are conceived as an effective three-rank Mixture when pulled together, but at the same time the Mixture can also be independently used in a “mezzo ripieno” combination without the Fifteenth, creating a very interesting tonal color.
Although English names have been chosen for the stops, as a sign of respect for the users, a number of tonal features are present that link this instrument in many different ways to the classical Italian tradition.
The Principal pipes, both internal and in the façade, are without “ears,” as in the classical Principale. The low octave of the stop is made of stopped mahogany pipes, housed against the ceiling inside the case. They are connected to the windchest through a complicated series of metal windways. A stopped wooden low octave for the Principale is a common feature of the Positivo Italian organs of the 17th and 18th centuries, and effective ways have been refined over the centuries—through proper scaling and voicing—to make the bridge between wood and metal remarkably smooth.
The Octave is of slightly smaller scale, or relative diameter, than the Principal, as found in many historical organs of northern Italy, as are the Fifteenth and the subsequent Mixture ranks.
The 4′ Spitzflöte is an almost identical replica of the Flauto in Ottava, a stop of rare singing quality used by Gaetano Callido1 in his instruments.
With the primary purpose of providing a good foundation, especially considering the rather dry acoustical environment of Wesley Chapel, an independent, real 16′ Bourdon has been provided for the Pedal, with pipes made of African mahogany, which are located behind the organ case.
The voicing technique is probably the element of highest significance. At the lowest wind pressure allowed by the acoustical conditions of the room (65 mm at the water column, or slightly over 21⁄2 inches), all pipes have been voiced with completely open toe and a minimum number of barely visible nicks at the languids. The result is a very pleasing, singing tone without excessive chiff or unnecessary non-harmonic overtones. This constitutes the foundation for a successful blending of the stops as well as for the creation of successful, pleasing solo voices. The pitch is 440 Hz at 20° Celsius and the temperament is equal.
Architecturally, the organ case has been designed to fit in the historical surroundings of Wesley Chapel. Although inspired both mechanically and aesthetically by the ancient Positivo organs, it must not be defined as a copy: its design is definitely a new, original creation. It features a façade composed of 22 pipes divided in two symmetrical sections. Each is topped by a hand-carved panel designed to add beauty to the ensemble while at the same time allowing for maximum sound egress. Two hand-carved wooden elements at the sides provide the necessary continuity between the top and the lower part of the case.
The casework is made completely from solid African mahogany. The keyboard features bone naturals with carved key fronts, and natural ebony sharps with bone inlays. The key cheeks are inlaid with thin strips of bone. The draw knobs are of ebony, with maple insets. The concave and parallel pedalboard (BDO measurements) is made of oak, with the sharps topped by ebony.
The mechanical action is suspended. The rollerboards are made from solid aluminum rollers with wooden arms.
The task of designing and manufacturing an instrument within such a small space has not been an easy one. In spite of this, every part is easily accessible for maintenance and ordinary tuning. The layout of pipes over the slider windchest in particular has been carefully designed to allow favorable conditions for the radiation of sound from all pipes.
—Francesco Ruffatti

Notes
1. Gaetano Callido was the most famous Venetian organbuilder of the 18th century. A pupil of Pietro Nacchini, he built over 430 organs in his lifetime, many of which are still preserved.
2. The basic principle of the open toe voicing technique is that of leaving the pipe toe completely open and regulating the sound volume by reducing the opening at the flue, or lower lip of the mouth. By operating this way several advantages are achieved, among which are a less turbulent air supply through the pipe foot and a more focused wind column at the mouth. These features are effective in reducing the “mouth noise” or “air noise” and, consequently, in reducing the need for languid nicking, a practice that can alter the natural timbre and that tends to reduce the development of upper partials in the sound spectrum.

From the organist
Several years back Glenn Arrants inquired: if he purchased an organ, would I play it?—and fortunately I said yes. He then informed me this would be no ordinary organ, but a pipe organ to be built in Italy. Through the months ahead, Glenn kept me informed of the progress.
The anticipation increased over the two and a half-year wait for the organ to be built. Finally we received word it would be delivered to the chapel on July 3, 2007. I was so excited about the opportunity to see this process firsthand, that I took off from work to be there to take photos and witness the arrival.
Spread throughout the chapel were all of the pieces that would be assembled into a pipe organ—in two weeks! I thought I understood the complexity of the pipe organ until I witnessed this firsthand. Imagine my excitement to hear that I would be playing the organ the first time that Sunday morning, although the pedals were not completed—the sound filling the sanctuary that morning was just a sweet taste of what was to come the following week when the instrument was complete.
There was concern that a pipe organ would overpower the small sanctuary and the congregation, but this is not the case. The sanctuary is filled with wonderful music, and the congregation’s voices are supported beautifully. Even with full organ, there is no vibration anywhere in the 177-year old chapel.
To be the first organist of the Wesley Chapel Fratelli Ruffatti pipe organ is indeed an honor, and a once in a lifetime opportunity. One cannot help but think of the dedicated craftsmen who built the organ, all the attention to detail, and the beautiful voices of the pipes. It gives me great joy to be able to sit down and play this organ, so much so that what seem like minutes in time are actually hours of enjoyment—this fine instrument will serve the congregation and community of Elk Neck for generations to come.
—Alice Moore

From the dedication recitalist
It was a great pleasure to prepare a program for the dedication of the new Ruffatti organ for Wesley Chapel of Elk Neck. It turned out to be much less of challenge to prepare for a “small organ” than one might have suspected. The organ is well capable of playing standard literature, Bach and Telemann, and there is, in fact, wonderful variety to be had in various combinations of the voices. Most surprising was the excellent way the organ could be adapted to the modern works of Michael Burkhardt and Donald Johns in hymn-based partitas. Equally important, the gentle and very artistic voicing of this instrument allows it to lead congregational song with all the color and emotion one could ask for in an instrument of larger design. The divided stops are an ideal way to get “more organ” than the package seems to contain. Bravo Fratelli Ruffatti and congratulations to Wesley Chapel of Elk Neck.
–Donald McFarland

A brief history of Wesley Chapel of Elk Neck, Elkton, Maryland
Elkton, Maryland, a city of some 13,000 people, sits on Chesapeake Bay near the Delaware border. It dates from the 1700s and was a strategic crossroads during the Revolutionary War. Washington and Lafayette passed through it frequently, and it is very near the spot where the British landed for their march on Philadelphia. The Wesley Methodist Society formed its congregation there in 1797 and, in 1830, the parcel of land was bought “for and in consideration of the sum five dollars current money of Maryland,” and the Reverend William Ryder laid the cornerstone of a new building in which to hold the society’s services. Handhewn beams formed the 25′ x 30′ single-room chapel on a fieldstone foundation. The little building has several features that make it a particularly important structure architecturally, including a perfect half-circle arched ceiling, and varying-width clapboards that hide its vertical plank construction. Wesley Chapel seats about 50, and is one of the oldest rural chapels still in use in the area.
Glenn Arrants remembers how his mother served as church organist for almost 50 years. She played on an early 20th-century Möller organ, which took up considerable space in the tiny building. In the mid-1990s, the chapel went through a complete restoration and the Möller, which was then beyond repair, was replaced with a restored Estey reed organ. Church members missed the sound of a pipe organ, however, and, in 2005, set in motion plans to acquire an instrument specially built for the chapel. Because of the design work, the quality of construction, and the reputation of the company, Wesley Chapel chose Fratelli Ruffatti, distinguished pipe organ builders of Padua, Italy, to build its new instrument.

 

MANUAL—unenclosed, 56 notes (C–G)
8′ Principal Bass 25 pipes mahogany + 95% façade + 70% interior
8′ Principal Treble 31 pipes 95% façade + 70% interior
4′ Octave 56 pipes 70%
4′ Spitzflöte Bass 17 pipes 30% 1–8 common bass with Octave
4′ Spitzflöte Treble 31 pipes 30%
2′ Fifteenth 56 pipes 70%
II Mixture 11⁄3′–1′ 112 pipes 70%

PEDAL—unenclosed, 27 notes (C–D)
16′ Bourdon 27 pipes mahogany

7 ranks, 355 pipes
% = percentage of tin in tin-lead alloy

Composition of the Mixture II by itself
1–36 11⁄3′ 1′
37–48 22⁄3′ 11⁄3′
49–56 4′ 22⁄3′

Composition of the Mixture II together with the Fifteenth 2′
1–36 2′ 11⁄3′ 1’
37–48 22⁄3′ 2′ 11⁄3′
49–56 4′ 22⁄3′ 2′

Cover feature

Files
Default

Anabel Taylor Chapel
Cornell University Baroque Organ
Ithaca, New York
GOArt / Parsons / Lowe

Selection
In 2003 Cornell University began planning for a new Baroque organ that would complement the existing Aeolian-Skinner organ in Sage Chapel (Opus 1009 III/68, 1940), as well as other smaller instruments located on campus. The decision was made to place the new instrument in an enlarged rear gallery, constructed with heavy timbers, in the intimate acoustic of Anabel Taylor Chapel. The new Baroque organ would be built by the Gothenburg Organ Art Center (GOArt), part of Gothenburg University in Gothenburg, Sweden, under the primary leadership of researcher and organbuilder Munetaka Yokota. This would not merely be an organ in “Baroque style,” but as much as possible, a reconstruction of an organ that could have been built in the late 17th or early 18th centuries by the German builder Arp Schnitger. The organ that Schnitger built in 1706 for the Charlottenburg Schlosskapelle (Palace Chapel) in Berlin was used as the primary model. This instrument is unique in that it blends the usual characteristics of Schnitger’s instruments built for the area around Hamburg (northwest Germany and the Netherlands), and characteristics of instruments in eastern and central Germany similar to what Johann Sebastian Bach would have known. It was also a sizable instrument for the Palace Chapel in which it stood.
The Charlottenburg organ was unfortunately destroyed during World War II, but there are recordings of the organ in addition to several photographs and documentation data, which allowed GOArt to use the original organ as a model. Because the Charlottenburg organ was confined in an unusual space, it was decided to follow a different model for the case design. The organ built by Schnitger in 1702 for the church of St. Salvator in Clausthal-Zellerfeld was chosen as a model for the case. Although its mechanism has been replaced several times since, the original Schnitger case is still in existence.
During the planning for this project, it was also decided to research how Schnitger built instruments in a city that was some distance from his home in Hamburg. This prompted GOArt and Cornell to enlist cabinetmaker Christopher Lowe of Freeville, New York, and Parsons Pipe Organ Builders of Canandaigua, New York, as local collaborators on the project. GOArt would design the organ, make the pipes, and build the keyboards, pedalboard, music rack, and bench, and provide all of the blacksmith work. Chris Lowe would construct the case, moldings, and balcony structure, and Parsons would build all of the internal mechanism: bellows, foot pumping mechanism, wind trunks, sperrventile, tremulant, key action, stop action, and windchests. The Parsons firm, Chris Lowe, and Munetaka Yokota would all work together to install the completed organ once the organ was set up and tested at Parsons’ Canandaigua workshop.

Parsons’ participation
Each new project brings its own set of challenges, and when a project involves three primary collaborators working for a university that demands perfection, those challenges could become overwhelming. However, working carefully through each new challenge, the final result speaks for itself as to the dedication to quality brought by each party.
One of the first challenges that we were presented with was the process of communicating design drawings. The design team in Gothenburg created a 3D CAD model of the organ. This model could be imported to our own 3D software, enabling us to measure components and create our own supplemental technical drawings. Three-dimensional computer modeling provides us with a greater sense of how all of the components relate to each other, allowing us to look at any combination of components and to rotate the computer model, and examine it from many angles. This was especially useful during this project, as this construction style was new to our staff and different from that to which we were accustomed.
Although the communication of CAD files across platforms provided challenges, other modern forms of communication were invaluable to this project, and are something that we guess Schnitger might have appreciated if it had been available to him. The use of Internet video conferencing allowed us to demonstrate and ask questions about specific shop techniques while allowing us to watch as Munetaka addressed these questions through demonstration, sketches, and gestures. These calls became daily occurrences during the latter part of the project and were crucial to its success.
This project was to be a “Process Reconstruction”—a term coined by the GOArt research team to describe the method used to discover unknown construction techniques, through the process of actually building the organ, rather than just through scholarly discussion. In other words, sometimes we cannot know the specific process or the correct way of building a component until we have experimented. In the end, this required us to learn many new skills and gave us an appreciation for the process that we may not have otherwise known.
The use of woodworking techniques consistent with the period was essential for the project’s success. We were permitted to use power equipment to mill lumber and cut it to size, but the final surface needed to show the traces of hand planing and scraping. As modern woodworkers, we are more likely to reach for our router or palm sander than for our hand plane. The necessity of using hand planes and scrapers in this project has re-trained us to reach for those tools and complete the task at hand before we could have gotten the router set up. The organ is made entirely of quarter-sawn white oak. This construction style relies heavily on joinery, some nails, and some glue. Long nails, ranging in length from 4 to 5 inches, were hand-forged by a blacksmith in Sweden, along with all the other ironwork required for the key and stop action, the bellows pumping mechanism, and the casework hinges and locks. Leather was provided by a German supplier, using period tanning techniques.
The key and stop actions are made in a manner consistent with Arp Schnitger’s practice. The key action rollers are made of white oak. Key action squares are made of iron and were supplied by GOArt. Most trackers and stickers are made of white oak, and the ends are hand wrapped with twine for strength. All metal trackers are of brass wire, and all trackers and stickers have hand-bent brass wire ends inserted. The key action is suspended, which means that the keys pivot at the tail and hang from the trackers or rest on the stickers from the chest. The Manual key action travels up from the key to the rollerboard, which is nailed to the back frame of the organ. The Rucwerk keyboard pushes stickers that carry the action to a rollerboard, which is located under the organist. The Pedal key action also relies on stickers that transfer motion to a rollerbox, which carries the motion, via trackers rather than rollers, to the Pedal chests on either side of the organ.
The stop knobs are made of pear that has been dyed black, with a bone button in the center. The stop action traces and trundles are made of white oak, with iron arms and levers. The iron arms are heated red-hot and then pounded into the oak trundles and are secured by quickly peening the iron.
The organ is winded from four large wedge bellows located in an isolated room in the tower of Anabel Taylor Chapel, approximately 30 feet above and behind the organ. The bellows can be foot pumped, or an electric blower can be used for practice without an assistant. Solid oak windlines connect these bellows to the organ. Windlines are joined with splines or inserted with tenons, and all joints are sealed with leather. A single Schnitger-style tremulant affects the entire organ.
Five windchests are located throughout the organ. The Manual and Pedal each have two chests, and the Rucwerk has one. All of the chests are built of solid quarter-sawn white oak. Given the wide humidity swings common to New York State, leather slider seals are used to eliminate runs and provide consistent wind to the pipes through changing climatic conditions. This required that each individual toeboard be carefully shimmed to allow the sliders to move with the correct freedom.

Casework
The casework was made by Christopher Lowe and Peter DeBoer in Chris’s workshop outside of Ithaca, New York. As the parts were made over an eleven-month period, they were assembled in a nearby barn. The case is made almost entirely of quarter-sawn white oak, mostly domestic. The oak in the long pedal tower frames and the thick posts at the console sides was imported from Germany. The rear panels are made of unfinished pine. Traditional joints hold the frame together: dovetails, splines, and pegged mortise and tenon. The panels are held together with clenched wrought-iron nails and have hand-forged iron hinges where access is needed for tuning. The molding profiles taken from the Schnitger organ in Clausthal-Zellerfeld were smoothed with an array of old wooden molding planes and custom-made planes and scrapers.
When Chris asked for guidance on what the finished surface of the moldings should be like, Munetaka responded, “We want to see the tool marks . . .
but they have to be nice tool marks.” The insides of the panels are finished with an extra deeply scooped texture for its acoustic property. All the oak has been fumed with ammonia to darken it, and the exterior surfaces were rubbed with linseed oil with iron-oxide pigment. The pipe shades are of basswood scroll-sawn to leafy shapes, and were painted by Joel Speerstra and his mother, Karen, with shadows and details to appear three-dimensional.
The casework was dismantled from the barn and moved to our Canandaigua workshop in November 2008. The interior components were installed over the next year, and the entire organ was enclosed in a tent and fumed with ammonia. Following this process, three wooden stops were installed for testing, and the organ was featured in an open house event at our facility on January 10, 2010.

Installation
Installation of the organ began in February 2010. This process required more on-site construction than to what we are accustomed. Because the pipes were shipped directly to Cornell University, the racking process had to be completed on-site. This required burning the rack holes to the correct size, for each pipe, in a tent outside the chapel in the frigid February air. The various tapered irons were carefully heated in a hand-crank coal forge; monitoring the exact temperature of the irons was critical to the process. Once ready, the irons were used to enlarge the holes by burning the wood until the pipes fit correctly. All of the upper racking was performed on-site, with the façade pipes being carefully carried up the scaffold to be marked for the precise location of the hook. Once soldered, a pin was located and driven into the oak rack.
All of the pipes that are offset from the main chests are conducted with lead tubes that were individually mitered, soldered, and fit on-site, and forced into leathered holes in the toeboards.

Pipework
The majority of the pipes in the organ are combinations of lead and tin. The wooden stops are made of pine. The pipe metal was cast on sand, as it would have been in Schnitger’s time. This technique was “rediscovered” by GOArt as part of their original research project in Gothenburg. In contrast, the modern method of casting thick metal sheets and then planing metal to the desired thickness by machine, produces a weaker material because it removes the hardest metal from the outer surface.
As Munetaka Yokota notes,

If the handcraft worker has to do everything by hand, then she or he will have the incentive of casting it as close as possible to the desired thickness and with the desired taper, and scraping it minimally, but very carefully, in the areas where it must be scraped well for acoustical reasons. This much more complex process works with the metal to create a sheet that gives a structural and acoustic result that, almost as a byproduct of the process, is as close as possible to the original Schnitger pipes. . . . Process reconstruction was developed with the goal of reproducing the acoustical quality of the 17th-century organ pipes, and this . . . philosophy is applied to the rest of the organ production as much as possible.

Final product
The organ was publicly presented during the Organ Inauguration and Dedication Festival and Conference, March 10–13, 2011 on the Cornell University campus. Many lectures were presented detailing the world that existed when the original organ at Berlin’s Schlosskapelle was introduced in 1706. There were demonstrations of the organ’s individual stops and a discussion about the construction process, and numerous concerts to demonstrate the organ as a solo instrument as well as how it worked together with other instruments. The inaugural concert by Harald Vogel was presented twice to allow more people to experience the new instrument in the intimate space of Anabel Taylor Chapel. The first inaugural concert also featured the new composition Anacrusis by Kevin Ernste. This piece featured the organ with electronic sounds as well as live organbuilding sounds made by numerous students and organbuilders who had worked on the instrument.
We would like to thank Professor Annette Richards, University Organist, who was the impetus behind this project and the glue that held it all together. Professor David Yearsley also provided welcome support and encouragement throughout the project. The support of Jacques van Oortmerssen, who served as inspector for Cornell during the project, was crucial to its success, and his performance during the festival was a tribute to his contributions.
The artistic endeavor of building the organ now gives way to the artistic endeavor of using it to teach and to enrich the lives of people for generations to come. For Parsons Pipe Organ Builders, there is a single underlying purpose to creating these beautiful instruments: that this organ will be used by Cornell students to glorify God through weekly services of worship.
—Parsons Pipe Organ Builders
4820 Bristol Valley Road
Canandaigua, NY 14424-8125
888/229-4820
www.parsonsorgans.com

To view a descriptive video produced by Cornell University, visit <http://www.cornell.edu/video/index.cfm?VideoID=1017&gt;.

Parsons’ staff:
Richard Parsons
Calvin Parsons
Duane Prill
Peter Geise
Aaron Feidner
David Bellows
Glenn Feidner
Graham Sleeman
Jay Slover
Matthew Parsons
Steven Martindale
Tony Martino

Photo credit: Timothy Parsons, unless otherwise indicated

Anabel Taylor Chapel
Cornell University Baroque Organ
Ithaca, New York
GOArt / Parsons / Lowe

MANVAL (II)
1 PRINCIPAL 8 fus
2 QVINTADENA 16 fus
3 FLOITE DVES 8 fus
4 GEDACT 8 fus
5 OCTAV 4 fus
6 VIOL DE GAMB 4 fus
7 SPITZFLÖIT 4 fus
8 NASSAT 3 fus
9 SVPER OCTAV 2 fus
10 MIXTVR 4 fach
11 TROMMET 8 fus
12 VOX HVMANA 8 fus

RVCWERK (I)
1 PRINCIPAL 8 fus
2 GEDACT LIEBLICH 8 fus
3 OCTAV 4 fus
4 FLÖITE DVES 4 fus
5 OCTAV 2 fus
6 WALTFLÖIT 2 fus
7 SEPQVIALT 2 fach
8 SCHARF 3 fach
9 HOBOY 8 fus

PEDAL
1 PRINCIPAL 16 fus
2 OCTAV 8 fus
3 OCTAV 4 fus
4 NACHT HORN 2 fus
5 RAVSCHPFEIFE 2 fach
6 MIPTVR 4 fach
7 POSAVNEN 16 fus
8 TROMMET 8 fus
9 TROMMET 4 fus
10 CORNET 2 fus
(preparation)

TREMVLANT
VENTIEL MANVAL
VENTIEL RVCWERK
VENTIEL PEDAL
CALCANT

Four wedge bellows

Pitch: a1 = 415 Hz
Compass: Manuals C, D–d3
Pedal C, D–d1
Temperament: Werckmeister III

The stop names are presented as on the stop labels. Note that the “x” has been replaced by a “p” in both the Rucwerk Sepquialt and Pedal Miptur, possibly as a nod to the division names Rückpositiv and Pedal.

30 stops, 40 ranks, with one preparation.

G&ouml;teborg International Organ Academy 2000

by Martin Jean
Default

An important project is happening in Göteborg, Sweden. In August, 1998, along with about 100 organists from all over the world, I attended the International Organ Academy of GoArt: Göteborg Organ Art Center, at Göteborg University, Sweden. This has become a major center of research, organ-building, teaching and performing. A recent visit there last year was the occasion to observe progress on the building of a four-manual, 54-stop, mean-tone organ after the style of the late-17th century in North Germany. The organ will be unveiled at the biennial International Organ Academy in Göteborg, August 5-18, 2000. For the background and purposes of GoArt, see the article by Pamela Ruiter-Feenstra (The American Organist, July, 1996) and their Web-page (URL: www.hum.gu.se/goart/organac.htm); here I will summarize briefly.

 

 

The Göteborg Organ Art Center is the brainchild of Hans Davidsson, a GU music faculty member and brilliant young organist and musicologist, working under the inspiration of Jacques Van Oortmersson and Harald Vogel. It was begun in January 1995 as an inter-disciplinary center for organ research and performance bringing together the strengths of the Göteborg University Musicology Department and the School of Music. It is now an independent center in the GU administrative structure. An international panel of musicians advises GoArt, including Jean Boyer, Pieter Dirksen, Frederick K. Gable, Ludger Lohmann, André Marçon, Kimberly Marshall, Hans van Nieuwkoop, Jacques Van Oortmersson, William Porter, Pamela Ruiter-Feenstra, Kerala Snyder, Axel Unnerbäck, Joris Verdin, and Harald Vogel.

GoArt's stated objective is to cover the entire spectrum of the art of the organ by linking the efforts of musicologists, performers, and organ builders, in order to study historic instruments, documents, music and performance practice issues. This blurring of traditional lines has led to a center that is bursting with energy and creativity and whose impact on the organ world is already keenly felt.

This multi-disciplinary approach has produced a number of tangible outcomes:

* the establishment of archives containing musical sources on micro-film, photographs and other media;

* education and research, with the emphasis on historically informed and discerning music-making;

* a wide-ranging collection of instruments, drawing inspiration from the many golden ages of organ playing;

* in-depth studies of the relationships between organ art and history, aesthetics, ideology and liturgy;

* dedicated well-rounded artistic training aimed at producing musicians who are able to balance intuition with intellect;

* the reconstruction of instruments on scientific principles which will serve as primary sources of information about performance practice.

The current six-year long project is entitled "Changing Processes in North European Organ Art: 1600-1970 - Integrated Studies on Performance Practice and Instrument Construction." This integration of performance, literature, and musicological research is linked together by the instruments--the hallmark of GoArt--valued as an indispensable research tool in the organ performance. This collection of organs in various styles includes a mean-tone organ by John Brombaugh in the Haga Church (2 manuals and pedal; 21 stops); a 19th-century French style organ built by the Dutch builder Verschueren (3 manuals and pedal; 43 stops, featured in the 1998 GoArt Organ Academy) housed in the recital hall of the School of Music; a "Father" Henry Willis organ built in 1871 housed and in the Örgryte Church (3 manuals and pedal, 31 stops); an instrument inspired by the Swedish Baroque style built by Gustavsson (2 manuals and pedal; 16 stops); and a pedal clavichord reconstructed by Joel Speerstra after the Gerstenberg instrument in Leipzig. (This is used to explore the connections between clavichord and organ techniques.)

Housed in the Örgryte Church, the organ currently in production is the aforementioned North German style mean-tone organ, using the work of Arp Schnitger as a primary model but also incoporating aspects by earlier builders such as Scherer and Fritzsche. Visually, it uses as a model the now defunct Schnitger organ of the Lübeck Dom. Tonally, the new organ is inspired by the organ of St. Jakobi, Hamburg, but also incorporates aspects of the organs of the Aa-Kerk, Groningen and St. Cosmae, Stade.

Some of the most sophisticated research into historic organ-building methods is being carried out and put into practice jointly by scientists of the Chalmers Institute of Technology in Göteborg and Master Organbuilders at GoArt (Hans Van Eeken, head draftsman; Mats Arvidsson, responsible for construction of the organ, excluding organ pipes; and Munetaka Yakoto, research and organ pipe production). The collaboration among these scientists and artisans has yielded new thoughts and discoveries in air-flow, acoustics of the room and the organ chamber, and materials and pipe construction.

One of the most interesting achievements of this project has been the retrieval of pipe making methods that were used until the time of the Industrial Revolution. The scientists at the Chalmers Institute were able to ascertain the formula for many metal alloys used by Schnitger and others. Organologists explored church records and the annals of builders of the time in order to re-construct the method of casting pipe metal on sand. This affects the cooling process of the pipe metal, thereby affecting the molecular structure, and ultimately the quality of the metal and the sound. Quite possibly this is the first time these techniques have been used since the early 18th century, and the people at GoArt are convinced that this old technique is, in part, responsible for the special sound quality of historic organs. More information on the North German organ, including the stop-list and a description of the church in which it is housed can be found on the GoArt web site: http://www.hum.gu.se/goart/w3b.htm#ngorp.

But all of this research could be mere mental gymnastics were it not brought to life by a vital and informed faculty in performance best displayed at the biennial GoArt conferences. In order to promote the next International Organ Academy, allow me to recall a few events from 1998.

This two-week course had several themes: one week devoted to "Aristide Cavaillé-Coll and the French Symphonic Organ," another to "The North German Organ" with special emphasis on the chorale fantasia, and an extended weekend symposium on "The Organ and Liturgy." The schedule was grueling yet rewarding, especially if you were willing to participate fully. Sessions began usually at 9 am and carried through until the late evening. It was not possible to attend everything, but a mere perusal of the program tells one of the richness of our legacy. Four primary kinds of meetings call the academy together (98% of which are done in English): master-classes, lectures, workshops, and recitals. Among some of the more engaging pedagogical experiences of the last academy were a session on Froberger by Ludger Lohmann of Stuttgart, a class on Alain by Jacques Van Oortmerssen (Amsterdam), an exploration of Franck's chorales by Jean Boyer (Lyon), and a class on Italian Baroque music by André Marçon (Bern).

The workshops were a cross between master-class and lecture and allowed listeners to focus on specific aspects of research as it relates to performance practice. Kimberly Marshall devoted two of her sessions to the genesis of early liturgical music for the organ and the music of Jeanne Demessieux. Pamela Ruiter-Feenstra unveiled some of her latest discoveries in the pedagogy of improvisation in the late 18th century. André Marçon led a detailed analysis of Frescobaldi's "Fiori Musicali" and alternatim practice in Baroque Italy. William Porter gave an insightful workshop on "Generating Principles of the Late 17th-century North German 'Praeludium'."

The lectures are too numerous to list but were nonetheless provocative and memorable. Jesse Eschbach, on the verge of the publication of his new book on Cavaillé-Coll, discussed the organ builder's thoughts on modernizing Classical and Post-Classical organs. Jean Ferrard discussed Cavaillé-Coll's relationships with Lemmens, Loret and Franck. Pieter Dirksen (a brilliant young musicologist who has recently published a book on the keyboard works of Sweelinck) spoke about Lübeck and Bruhns and the final stages of the North German chorale fantasia. Kerala Snyder explored Bach and the Lutheran liturgy and the unlikely topic of the connections between the French tradition and Buxtehude. Fenner Douglas gave a withering and yet very accurate appraisal of the neo-classic renovations that happened to historic French organs in the 1950s-70s.

And now to the heart of the matter--performance. Were it not for this aspect, GoArt may be little more than a meeting for musicologists. But in these two weeks, I heard fine organ playing on beautiful instruments.

In the Haga Church (Brombaugh mean-tone organ) André Marçon opened the academy with a moving performance featuring music of the Italian baroque. While the instrument is built in the North German style, the transparent colors of the principals admirably revealed the subtle singing quality of this repertoire. Marçon is steeped in this period, and displays his acumen beautifully through intelligent, colorful and expressive articulation and phrasing.

One of the great moments of the entire Academy was to hear William Porter on the same instrument, this time playing music of 17th-century North Germany. Two variation sets of Scheidt ("Vater Unser" and "Io son ferito lasso") were among the highlights of this program. Porter's playing of this music is rivaled by few others. Gauging each tempo correctly, using old fingering practices to expressive ends, discovering the beauty of the simplest of registrations, and knowing the architecture of this music are among the reasons why his playing is so remarkable. The program closed with a riveting performance of the Bruhns "Praeludium in G," but not before he improvised a chorale fantasy on "Gelobet sei Gott" that made one think it was Buxtehude at the organ!

The French symphonic organ was a featured instrument at this year's academy. Generous in scaling and voicing, even though the Verschueren organ is housed in a recital hall of limited acoustic, the organ is nonetheless colorful and brilliant without being overwhelming to the listener. The sounds of the montres and strings were particularly convincing. Jean Boyer's performance of Messiaen's La Nativité was one of the memorable moments of these two weeks. Boyer is an extremely intelligent man (as he displayed to us in his teaching and lecturing), and this intelligence is wedded to a musical soul. Ludger Lohman gave a stellar performance of the Vierne Fifth Symphony and Kimberly Marshall gave a wonderful overview of some of the great works of Demessieux. I regret missing a performance by Hans-Ola Ericsson of Livre du Saint Sacrament of Messiaen (the recital BEGAN at 11pm!!) but reports from reliable sources the next day glowed with unanimous approval. Apparently the audience was spellbound for the 21/2 hours of this event.

Director of GoArt, Hans Davidsson, apparently possesses all of the important gifts of the complete artist/teacher: intellect, creativity, vision and musicality. These were demonstrated throughout the conference but particularly as he was featured in a recital of the Third Part of Bach's Clavierübung, in the Bethlehem Church. This performance revealed a deep understanding not only of this great music, but also of the theology that lay behind it. It was a profoundly moving event.

Curiously, the recitals that seemed to encourage the most discussion afterwards were not organ recitals at all. Joris Verdin, harmonium player and organist from Belgium, completely amazed everyone by his subtle and expressive playing on the GoArt French harmonium. While this instrument was well-known and used by French organists in the 19th century it has since fallen out of use, especially in the United States where the harmonium uses a different wind system than the European version. The subtle nuances that he was able to achieve with this instrument were nothing short of miraculous and brought to life music which sounds little more than hum-drum on the organ. Equally noteworthy was an evening spent in the Gunnebo Castle in nearby Molndal. It was a marriage of sensations: there the audience sat in an 18th-century home listening to a music of the period played on a replica of an 18th-century double clavichord. The featured performers, Joel Speerstra and Ulrika Davidsson, played music of late 18th-century Germany while Pamela Ruiter-Feenstra improvised a charming sonata in late 18th-century style using the principles she had discussed only days before in her lecture. Here was a real unity of architecture, sound, music and knowledge that exemplified what GoArt is able to achieve.

GoArt is currently engaged in a number of publications, perhaps the most significant being a massive tome called The Organ as a Mirror of Its Time, edited by Kerala Snyder. This book, which will be available in the Fall 2000, traces the significance of the organ in western culture, particularly as building styles were affected by and helped shape liturgical practice, improvisation, and the secular music aesthetic. The specific foci include the organs of the North German Masters, Swedish organ-building practices and the French and German organs in the 19th century. Chapters on the organ reform movement and the latter-day performance practice movement are also included. Among the contributors are the current GoArt planning board and faculty.

Information on the upcoming GoArt International Organ Academy (August 5-18, 2000) may be found at http://www.hum.gu.se/goart/w-100b.htm. The focus will, of course, be the North German Baroque Organ and the conference will unveil the new instrument currently being finished. Performers and clinicians will include Harald Vogel, Daniel Roth, Ludger Lohmann, David Yearsley, Rudolf Kelber, Yuko Hayashi, Lynn Edwards, Pieter Dirksen, Paul Peeters, William Porter and many others. Contact information: Organ Academy, School of Music, Box 210, SE-405 30 Göteborg, Sweden; ph +46-31-773 52 11 or -773 52 06; fax +46-31-773 52 00; e-mail [email protected]

http://www.hum.gu.se/goart/w-109.htm#fee

In a time when the organ seems to be on the periphery of musical performance, and as awareness of the instrument even among the musically informed is at an all-time low, the Göteborg Organ Art Center has positioned itself to be a catalyst in the midst of this crisis. Their solution does not provide a single-style agenda, nor a bag-full of tricks meant simply to "thrill" audiences. Rather, its broad base reminds us of the richness of the legacy that has been given us and calls our attention again to the depth and breadth of the largest of all instrumental repertoires.

 

Organ Acoustics at High Altitudes

James W. Toevs

Jim Toevs has a doctorate in nuclear astrophysics. While a professor at Hope College, he taught and consulted in acoustics. A musician, for 20 years he was the principal trumpet in the Los Alamos (NM) Symphony Orchestra and has sung in and directed church choirs.

Files
Default

Introduction1
With the installation and voicing of the wonderful new Fisk Opus 133 tracker organ in the First Presbyterian Church of Santa Fe, New Mexico, a number of interesting effects and impacts of Santa Fe’s thin air became apparent. This article will note the major observations and describe the physical acoustics related to organ pipe function at high altitude.
Santa Fe is located at the foot of the southern Sangre de Cristo mountains at an altitude of about 7,000 feet above sea level. In fact, the altitude at the church is 2,127 meters or 6,978 feet. At this altitude, both the atmospheric pressure and density of air are reduced to about 77% of their values at sea level. This difference in pressure corresponds to about 92 inches of water. Considering that most organs operate with a wind pressure of 2 to 4 inches (water column), this difference is quite significant. It is not surprising that organ operation is impacted by this difference; perhaps what is surprising is that the impact is not greater. The fine people of C. B. Fisk dealt with these differences with little difficulty.
Parameters in which high altitude might impact pipe organ performance include:
• Pipe intonation—essentially no effect;
• Windchest blower requirements—observed significant effect;
• Tone production: pre-voicing and voicing—observed significant effect;
• Sensitivity to windchest pressure—observed significant effect;
• Sanctuary acoustics—small but real effect.

Pipe intonation
The impact of altitude on the basic intonation of the organ pipes themselves is minimal. The frequency at which a pipe sounds (fundamental) is based on the length of the pipe and the speed of sound. The length, of course, does not depend on altitude, and fortunately neither does the speed of sound because the ratio of the pressure to density remains the same so long as the temperature is fixed. Basic intonation is therefore not affected by altitude.

Windchest blower requirements
The relationship between blower output (cubic feet per minute, or CFM) and desired windchest pressure (usually measured in equivalent inches of water column supported above the ambient pressure) is given by Bernoulli’s equation. This is perhaps the most fundamental law of fluid flow and basically is just a statement of the conservation of energy. Because density also decreases with altitude, a higher blower capacity will be required in high altitude installations than at sea level in order to obtain the same windchest pressure used at sea level. Using a higher output blower has become standard practice for high altitude installations.

Tone production: pre-voicing and voicing
As Mitchell and Broome have pointed out,2 windchest pressure must compensate for altitude differences when pre-voicing will be performed in a shop that is at a different altitude than the location at which the organ will be installed and receive final voicing. In both flue and reed pipes, the velocity has a direct impact on tuning and sound quality, and it is clearly desirable to produce the same pipe velocities during both pre-voicing and voicing. Once again from Bernoulli’s equation, since the density of air is greater at sea level than at high altitude, a higher windchest pressure must be used at sea level to produce the same velocities in the shop as in the installation. The desired shop windchest pressure is found by multiplying the desired windchest pressure at altitude by the inverse ratio of the atmospheric pressures at the two locations. This is the formula described by Mitchell and Broome.
Pressures of 3 inches and 4 inches were required for Opus 133, and the inverse pressure ratio between Santa Fe and sea level is 1/0.77 = 1.3. Therefore, pre-voicing in the Fisk Gloucester shop used pressures of 3.9 inches and 5.2 inches (water column).

Sensitivity to windchest pressure
During the final stages of voicing in Santa Fe, Fisk Opus 133 was performing very well, but suddenly developed significant intonation and sound quality problems when the HVAC (heat, ventilation, and air conditioning) system for the sanctuary switched between its two modes of operation. The change resulted in an increase of windchest pressure from 3 inches to 3¼ inches (water column). At sea level a change of ¼ inch could be accommodated without greatly impacting organ tuning and voicing, but in Santa Fe such was not the case. This sensitivity was not anticipated, but can be understood through an examination of tone production in organ pipes. In both flue and reed pipes steady energy is supplied through air streams produced by the windchest pressure, and a complex mechanism converts this energy into oscillating energy (sound).

Flue Pipes
In both a tin whistle and in flue pipes, production of oscillation, that is, tone, is through “edge tone generation.” The edge tone frequency depends strongly on air velocity through the windway, and must resonate with one of the natural modes (frequencies) of the pipe; the fundamental mode is always chosen. However, a small change in frequency of the edge tone can pull the edge-tone-pipe system away from the desired intonation. A small change in windchest pressure at altitude will result in a larger change in velocity (and therefore in pitch) than at sea level, due to the reduced density of air at altitude.

Reed pipes
In a reed pipe, air is supplied to the boot from the windchest at a pressure greater than the pressure in the resonator. This causes air to flow under the reed (tongue) into the resonator. Oscillation and therefore tone generation occur when very specific relationships are met among the variables and the stiffness of the reed. Both the stiffness and the oscillating length of the reed are set by the tuning wire.
The effect of a small change in windchest pressure on the frequency of a reed pipe is also greater than it is at sea level. Furthermore, the operating point of the reed, that is, the zero point of its oscillation, moves closer to the shallot as windchest pressure is increased. This may sharpen the onset of each cycle of the oscillation, increasing high frequency content, and, if close enough to the shallot, cause the flow under the reed to become turbulent. Both effects can alter the sound quality of the reed pipe.
To summarize this discussion, for both reed and flue pipes the sensitivity to small changes in windchest pressure is greater at altitude than at sea level, as the Fisk personnel discovered. The solution to this problem for Opus 133 was to gain a better understanding of the Santa Fe FPC sanctuary HVAC system and take appropriate steps to minimize the windchest pressure difference between the two operating modes. Figure 1 is a schematic of the system. The two modes of operation are as follows:
• Recycle mode: Air flows from the blower room to the sanctuary and is returned through the bellows room to the blower room. Valve R is open and Valve FA is closed down to 15%.
• Outside air mode: Outside air is brought in to the blower room and distributed to the sanctuary, and exits through the roof when the sanctuary pressure rises above that of the outside. The recycle valve is closed and the fresh air valve is 70% open.
Cost and environment are the two reasons for two modes of HVAC operation. During winter when outside air is well below the desired ambient temperature in the sanctuary, the air exchange is limited to the 15% required by code for healthy fresh air in the sanctuary (corresponding to the 15% setting of the fresh air valve). A larger percentage of fresh air would require more preheating, increasing gas costs. During summer when outside air is warmer than that desired for the sanctuary, a larger fresh air fraction would increase electric costs for cooling. On the other hand, during spring and fall, when some cooling is needed and outside air is marginally cooler than the desired sanctuary temperature, an increased recycle fraction saves cooling costs. Of course, environmental concerns track with increased gas and electric costs.
Organ pressure is supplied by the small blower in the bellows room and regulated by the bellows. It was found with a simple manometer (U-shaped tube with water) that the organ pressure during the recycle mode was 3 inches of water (that is, water in the manometer rose 3 inches), and in the outside air mode, the organ pressure was 3¼ inches (water column). The ¼-inch change significantly impacted tuning and sound quality. The reason for the ¼-inch change was that the recycle mode involved a great amount of air flow in the return ducts through the bellows room to the blower room, creating a pressure drop of ¼ inch in the return ducts. In this mode, then, the bellows regulating system had to supply 3¼ inches of pressure in order to yield the desired 3 inches of windchest pressure.
When the recycle valve closed to change to the fresh air mode of operation, the only flow in the return duct from the sanctuary to the bellows room was the much smaller flow used by the organ itself. Therefore, there was no loss in that section of duct, and the bellows room was essentially at the same pressure as the sanctuary. With the bellows regulation system still set at 3¼ inches, the windchest pressure became 3¼ inches.
During this time, the main HVAC blower was operating at 100% capacity (60 Hz) even though the blower system included a variable speed control. The following experiment was performed: the variable speed control was set to reduce the blower speed to 2/3 of full capacity (40 Hz), and the pressure differential between the sanctuary and the blower room was measured for both modes of operation—recycle with 15% air exchange and fresh air with 70% air exchange. The only change from the original HVAC settings is that the blower now operates at a lower speed. It was found that the pressure differential at 15% air exchange was 1⁄8 inch, and at 70% air exchange (recycle valve closed) was 1⁄16 inch. As expected, with the organ operating with the bellows regulating system set at 3¼ inches, the organ pressure was 33⁄8 inches at 15% air exchange (recycle mode) and 35⁄16 inches at 70% air exchange.
The bellows regulating system is now set at 31⁄16 inches, yielding an organ-to-sanctuary pressure of 3 or 31⁄16 inches in the two modes of operation—a difference of 1⁄16 inch, small enough that tuning is now not adversely affected. In addition, HVAC noise has been greatly reduced, and the air circulation in the sanctuary, while quite adequate, is less drafty for those sitting in the ends of pews near the walls, where the supply air vents are located.

Sanctuary acoustics
FPC Santa Fe underwent major renovation before Fisk Opus 133 was installed. This included considerable acoustic work in the sanctuary to prepare it for this fine instrument; much of the focus was on steps to increase the reverberation time. The chancel has diamond plaster side walls, which diverge slightly to help sound radiate into the sanctuary. The sanctuary has hardwood floors with minimal carpeting, hard plaster walls, and hardwood pews with reasonably reflective pew cushions. The ceiling was rebuilt with heavy plywood above latillas, and fine sand one foot deep was poured onto the plywood to help contain low frequencies from the organ. Although the reverberation time has not been measured, it is estimated to be about 1.5–2.2 seconds.
In addition to sound energy absorption each time a sound wave encounters a surface, sound energy can be lost through absorption in air. Absorption in air is a rather complex phenomenon involving molecular dynamics, and it varies with air density and relative humidity in a manner that is counterintuitive: thin, dry air attenuates sound more than thick, wet air. Furthermore, the attenuation varies with frequency. Table 1 provides values for attenuation at different frequencies for sea level and the Santa Fe altitude and for 10% and 50% relative humidity. Notice that absorption is greater at low humidity, high altitude, and higher frequency. At high altitude air is thinner and can hold less moisture; relative humidity of 12%–15% is not unusual on summer days in Santa Fe. To mitigate against the drying effects on organ components, a humidifying system is used to maintain relative humidity at around 40%; this also helps to reduce air absorption at higher frequencies.
In Table 1, the sound absorption is given in decibels per kilometer, which is just a little farther than sound travels during a reverberation time of 2.2 seconds. Figure 2 provides a plot of these attenuation data at sea level and in Santa Fe at 50% relative humidity.
Clearly, the attenuation is greater at high altitude and high frequency. However, to understand whether or not this will impact the sound of the organ in the sanctuary, the attenuation must be compared with reverberation decay, the decay in sound energy due to reflection off surfaces. This comparison showed that at 4 kHz, the air attenuation at sea level would be barely noticeable if at all, and would be completely negligible at lower frequencies. In Santa Fe a very astute listener might notice the lack of high frequency components after initial transients on a very dry day, but otherwise the sanctuary acoustics should be little affected by the high altitude.

Conclusion
The differences in organ acoustics and operation between sea level locations and Santa Fe are real and observable, but not severe. Judicious choices of windchest pressure for pre-voicing and voicing and better understanding of the HVAC system both have contributed to a very successful installation: Fisk Opus 133 is now performing regularly and brilliantly. It is hoped that these observations will serve others who choose to install a fine organ at similar altitudes.

 

Current Issue