Skip to main content

In the Wind. . . .

John Bishop
John Bishop

Shifty and puffy

It is mid-September in mid-coast Maine, and the days are getting shorter. Sunset here is about sixteen minutes earlier than in New York City, as we are as far east as we are north of the Big Apple. There are four windows facing east in our bedroom that allow us to track the motion of the sun, which is rising further south than it did a month ago. When we are on the water, we notice that the afternoon sun is lower in the sky as the sunlit water sparkles differently than in the height of summer. And the wind changes dramatically with the change of season. In mid-summer, we cherish the warm sea breeze, predominant from the south or southwest, caused by the air rising as it crosses the sun-warmed shore. All that cooler air above the ocean rushes in to fill the void, and we can sail for miles without trimming the sails in the steady and sure wind.

We had our last sail of the season last weekend in lumpy, bumpy wind from the northwest, which is never as steady as the southwesterlies. It is shifty and puffy, and it can be a struggle to keep the boat going in a straight line. Just as you get going, you get “headed” by a burst of wind from straight ahead, or you get clobbered abeam by a twenty-five mile-per-hour gust. Oof.

You have read this kind of thing from me before, thinking about sailboats when I should be writing about pipe organs, but because both are important parts of my life, and both involve the management of wind, I cannot escape it. And I am thinking about it a little more than usual because at the moment I am releathering three regulators for the organ I am working on. My method for assembling and gluing the ribs and frames of a wind regulator involves seven steps:

Glue outside belts on the pairs of ribs.

Glue inside canvas hinges on the pairs of ribs.

Glue canvas hinges around regulator frames and bodies.

Glue ribs to top frames.

Glue ribs/top frames to body.

Open regulator and glue gusset bodies.

Close regulator and glue gusset tails.

It is still officially late summer as I write this, and my personal workshop is a three-car garage. Since we are on the shore, I love to have the overhead doors open to the breezes, though it is humid here. I am using the traditional flake hide glue (the stuff that is made when the old horse gets sent to the glue factory) that you cook in an electric pot with water, apply hot, and wipe clean with a hot-water rag that I keep just hot enough that I can put my hands in to wring the rag dry in the sort of double-boiler from which you scoop oatmeal at a cafeteria line. For the glue to set, the moisture must evaporate, and since the air is humid, I have to wait overnight between each step. Running fans all night keeps the humidity down and speeds the drying. In winter, when the air inside is dry, I can typically do two gluing steps in a day.

One of the regulators I am working on is thirty inches square. For that one I am using around twenty-five feet of one-inch-wide heavy canvas tape for the hinges and a comparable length of laminated rubber cloth for the outside belts. The gussets (flexible leather corner pieces) are cut from supple heavy goat skins that have a buttery texture and are impossible to tear. The key to finishing a wind regulator is finding a combination of materials that are all very flexible and strong, that are easy to cut, and that receive glue well enough to ensure a really permanent joint. If the structural integrity of a regulator is iffy, the wind will be shifty and puffy, and it will be a struggle to keep the music going in a straight line. Just as you get going, you get “headed” by a burst of wind that jiggles the music, or you get clobbered by a jolt from out of nowhere.

 

What’s in a name?

I am referring to these essential organ components as “regulators.” We also commonly call them “bellows” or “reservoirs.” All three terms are correct, but I think regulator is the most accurate description of the function of the thing. Taken literally, a bellows produces air. Air is drawn in when it is opened and pushed out when it is closed, like the simple bellows you have by the fireplace. The hole that lets the air in is closed by an internal flap when air is blown out.

A reservoir stores air. In an organ built before the invention of electric blowers, it was common for an organ to have a pair of “feeder bellows” operated by a rocking handle that blew air alternately into a large reservoir. The feeders had the same internal flaps as the fireplace bellows. The top of the reservoir was covered with weight (bricks, metal ingots, etc.) to create the air pressure, and the air flowed into the organ as the organ pipes consumed it. The bellows were only operated, and the reservoir was only filled when the organist was playing. Just try to get that kid to keep pumping through the sermon. . . .

With the introduction of the electric blower, it became usual to turn the blower on at the beginning of a concert or service and leave it running. That made it necessary to add a regulating valve between the blower and the reservoir. When the reservoir filled and its top rose, the valve closed, stopping the flow of air from the blower, so the system could idle with the blower turning and the reservoir full. When the organist played and therefore used air, the top of the reservoir would fall, the valve would open, and the air could flow again. Like before, there was weight or spring pressure applied to create the proper wind pressure. The addition of that valve added the function of pressure regulation to the bellows. In an organ with an electric blower, the bellows are storing and regulating the pressurized air. Calling it a regulator seems to cover everything.

 

The longer you go, the heavier you get.

Twice in my life, I have heard EMTs comment about my weight when lifting the stretcher, once after a traffic accident in the 1970s, and again after a fall in an organ seven years ago. But that is not what I am talking about here. We usually think of an inch as a unit to measure length or distance, so how can it refer to pressure, as in, “the Swell division is on six-inches of pressure?”

In industrial uses of pressurized air, more familiarly, in the tires or of your car, the unit of measure is pounds per square inch (PSI). I inflate the tires of my car to 35 PSI, and I use 80 or 100 PSI to operate pneumatic tools. But while my workshop air compressor gauges those high pressures, the actual flow is pretty small, something like two cubic feet per minute.

Organ wind pressure is much lower, and we measure it as “inches on a water column.” Picture a clear glass tube in the shape of a “U” that is twenty-inches high. Fill it halfway with water, and apply pressure to one side of the U. The water goes down on that side of the tube, and up on the other. Use a ruler to measure the difference, and voilà, inches on a water column, or centimeters, or feet. You can easily make one of these using plastic tubing. The little puff it takes to raise three inches of pressure is just the same little puff it takes to blow an organ pipe you are holding in your hand. Instead of the actual tube full of water, we use a manometer that measures the pressure on a gauge without spurting water onto the reeds.

Did you ever wonder how the conversion works? One PSI equals almost 28 inches on a water column. Five inches on a water column equals about .18 PSI. And how does that relate to the organs you know? In a typical organ, it is usual to find wind pressures of three or four inches. In general, smaller organs with tracker action might have pressures as low as forty millimeters, or less than two inches. In a three-manual Skinner organ, the Great might be on four inches, the Swell on six, and the Choir on five. In a big cathedral sized organ, solo reeds like French Horn and English Horn might be on fifteen inches, while the biggest Tubas are on twenty-five. The world-famous State Trumpet at the Cathedral of Saint John the Divine in New York City is on fifty inches (incredible), and in the Boardwalk Hall organ in Atlantic City, New Jersey, the Grand Ophicleide, Tuba Imperial, Tuba Maxima, Trumpet Mirabilis are on one hundred inches of pressure, or 3.61 PSI! Stand back. Thar she blows!

Once you have determined pressure, you also have to consider volume. A twenty-rank organ at three inches of pressure might need 1,000 cubic feet per minute at that pressure to sustain a big chord at full organ. Some of the largest organ blowers I have seen are rated at 10,000 CFM at ten inches of pressure. And when you lift the biggest pipe of a 32 Open Wood Diapason and play the note as an empty hole, you will blow your top knot off. It takes a hurricane coming through a four-inch toehole to blow one of those monster organ pipes.

 

All the air you could wish for

Before the introduction of the electric blower, most organs had at least two bellows. One would be in free fall, supplying pressure to the organ while the other was raised by the organ pumper. The system I described earlier with two feeders and a reservoir was a great innovation, because once the reservoir was full, the pumper could slack off a little if the organist was not demanding too much wind. The six-by-nine-foot double-rise reservoir in the heart of a fifteen-stop organ by E. & G. G. Hook or Henry Erben has huge capacity, and can blow a couple 8 flutes for quite a while without pumping. Organs by Hook are great examples of efficiency, with pipes voiced in such a way as to produce lots of tone with very little air, and even large three-manual organs are pumped by just one person using the two-feeders-and-a-reservoir system.

The electric blower changed everything. Organbuilders and voicers could now work with a continuous flow of wind at higher pressures than were available before. New styles of voicing were invented, and along with the introduction of electric keyboard actions, organs could be spread around a building, creating stereophonic and antiphonal effects. When organs were first placed in chambers, and their sounds seemed remote, the builders raised the pressure and increased the flow of air through the pipes, driving the sound out into the room.

While modest organs with electric blowers usually have only one wind regulator, larger instruments can have dozens. In a big electro-pneumatic organ, it is common to have a separate regulator for each main windchest. That is how Ernest Skinner could have the various divisions of an organ on different wind pressures, as each individual regulator can be set up to deliver a specific pressure.

 

But what about wiggly?

When I mention factors that can add to the stability of an organ’s wind system, I raise the question about “wiggly wind,” or “shaky wind,” both somewhat derogatory terms that refer to the lively flexible wind supplies in smaller and mid-sized mechanical action organs with lower wind pressure. When wind pressure is low and an entire organ receives its air from a single regulator, the motion of the wind can be affected by the motion of the music. It is especially noticeable when larger bass pipes are played while smaller treble pipes are sustained. At its best, it is a delightful affect, akin to the natural flow of air through the human voice. At its worst, it is a distraction when the organ’s tone wobbles and bounces.

This phenomenon is part of the fierce twentieth-century debate concerning “stick” organs versus so-called “industrial-strength” electro-pneumatic organs. I have been servicing organs for more than forty years, and I have often thought that much of the criticism of the emerging tracker-action culture was because craftsmen were reinventing the wheel, learning the art of organbuilding from scratch. They may have measured the dimensions of an organ bellows accurately but failed to compensate for the fact that the ancient model did not have an electric blower. And let’s face it: a lot of flimsy plywood tracker organs were built in the 1960s and 1970s, enough to give that movement a bad name from the start.

The evolution of modern tracker organs toward the powerful, thrilling, reliable, sonorous instruments being built today has much to do with how much the craft has learned about the management of wind over the years. A little tracker organ built in 1962 might have key channels and pallets that did not have the capacity to blow their pipes. It might have flexible wind conductors to offset bass pipes that were too small and that jiggled when the notes were played, causing the tone to bounce. It might have bass pipes with feet that were too short, so air did not have a chance to spread into a dependable sheet before passing between the languid and the lower lip. All of these factors affect the speech of the pipes, giving the impression that the organ is gasping for air. And worse still, you might hear the pitch drop each time you added another stop. I have worked on organs where adding an 8Principal made the 4Octave sag. How do you tune a thing like that? I marvel now at how air pressure moves through the best new tracker organs, especially at the wonderful response of large bass pipes. Organs by builders like Silbermann do not lack in bass response. Once the revival movement was underway in the middle of the twentieth century, it took a few decades to really start getting it right.

§

The organ I am working on today is a simple little thing with two unit action windchests. Each has its own regulator, and there is a third “static” regulator that mounts next to the blower. The blower produces seven inches of pressure; the static regulator brings it down to five inches and distributes the wind to the other two regulators, which each measure out four inches. The biggest pipes in the organ are the 16Bourdon, and though there are only ten ranks, it is a unit organ, and a lot of pipes can be playing at once. It is destined to be a practice instrument for a university organ program, so I know that talented and ambitious young organists will be giving it a workout as they learn the blockbuster literature we all love so much. I hope that those students never have to worry about having enough air. And perhaps Maine’s salty breezes will travel with the organ, adding a little flavor to the mix.

Related Content

The 1864 William A. Johnson Opus 161, Piru Community United Methodist Church Piru, California, Part 1: A virtually complete documentation and tonal analysis derived from the data, drawings, and photographs from the restoration of 1976

Michael McNeil

Michael McNeil has designed, constructed, and researched pipe organs since 1973. He was also a research engineer in the disk drive industry with 27 patents. He has authored four hardbound books, among them The Sound of Pipe Organs, several e-publications, and many journal articles.

Default

Preface

Good documentation of organs with enough pipe measurements to permit an analysis of both scaling and voicing is extremely rare. Pipe diameters, mouth widths, and mouth heights (cutups) may be sometimes found, but toe diameters and especially flueway depths are rare. Rarer still are wind system data, allowing a full analysis of wind flow and wind dynamics, parameters that have an enormous impact on the sound of an organ. The reader will find all of this in the following essay on William A. Johnson’s Opus 161.

Good documentation is important for several reasons. We can make useful comparisons with other organs to learn how a specific sound is achieved. And perhaps most importantly, we can document the organ for posterity; while organs are consumed in wars and fires, they are most often replaced or modified with the changing tastes of time. They never survive restorations without changes. Comprehensive documentation may also serve to deter future interventions that intend to “modernize” an organ. Lastly, future restorations of important organs will be more historically accurate if they are based on good documentation.

The mid-nineteenth-century scaling and voicing of William A. Johnson is very similar to the late-eighteenth-century work of the English organbuilder Samuel Green, as evidenced by the data from Johnson’s Opus 16 and Opus 161. Stephen Bicknell provides us with detailed descriptions of Green’s work.1 Johnson’s scaling is utterly unlike the work of E. & G. G. Hook, whose 1843 Opus 50 for the Methodist Church of Westfield, Massachusetts, set Johnson on a career in organbuilding when he helped the Hooks with its installation.2 In this essay we will explore Johnson’s Opus 161 in detail and contrast it with the Opus 322 of the Hooks, both of which were constructed within a year of each other.3 While the Hooks used a Germanic constant scale in their pipe construction, Johnson significantly reduced the scale of his upperwork stops, much in the manner of Samuel Green and classical French builders.

The question arises as to whether Johnson came to his design theory by way of a process of convergent evolution (i.e., independently), or whether he was exposed to the organ Samuel Green shipped to the Battle Square Church in Boston in 1792, and which “was played virtually unaltered for a century,” according to Barbara Owen.4 The author suggested to Owen that the Green organ may have had a strong influence on Johnson, but she thought it unlikely that Johnson would have made the long trip from Westfield, far to the west of Boston. 

Travel would indeed have been much more difficult in 1843 when Johnson was exposed to the Hook organ at Westfield. But of some significance was the extension of the Western Railroad from Boston to Westfield in 1843. This new railroad may have been the means by which the Hook organ was shipped to Westfield. Elsworth (see endnote 2) clearly makes the case that Johnson was intoxicated by organbuilding with his exposure to the Hook organ. It is easy to imagine that he would have made a pilgrimage to Boston, at the time a mecca of American organbuilding, perhaps invited by the Hooks to accompany them after finishing their installation in Westfield.5

The author was engaged in 1976 by Mrs. Gene Davis, the organist of the Piru Community United Methodist Church, to evaluate the organ at that church. The identity of the organ was in question as no nameplate was in evidence on the console, the organ was barely playable, and its sound was greatly muted by the crude placement of panels in front of the Great division to make it expressive by forcing its sound through the shades of the Swell division above it. An inspection showed that nearly all of the pipework was intact, and a contract was signed to restore the organ to playable condition. The organ was cleaned, the pipes repaired, the few missing pipes replaced, and much of the action repaired by Michael McNeil and David Sedlak.

The church office files produced an undated, typed document that stated: 

 

The pipe organ in the Methodist Church of Piru was built by William Johnson, of Westfield, Mass., in the early 1860s, making it probably the oldest operating pipe organ in California. It was a second-hand organ when transported by sailing ship 17,000 miles around Cape Horn before 1900, and installed in a Roman Catholic Church in San Francisco. After the earthquake and fire of 1906, the organ was moved to another church and probably at this time parts damaged in the quake were replaced. After many more years of service it was retired and put into storage until, in 1935, Mr. Hugh Warring was persuaded to purchase it for the Piru church. It was purchased for the storage cost of $280.

Evidence of a different and more likely provenance was discovered during the removal of pipework and the cleaning of the organ. Three labels were found glued to the bottom of the reservoir (perhaps as patches for leaks). Two labels read: “Geo. Putnam ‘Janitor’ Stockton California July 1 ’99.” A third label read: “From the Periodical Department, Presbyterian Board of Publication, and Sabbath = Schoolwork, Witherspoon Bldg, 1319 Walnut St., Phila. PA.” At a much later time Reverend Thomas Carroll, SJ, noticed that the clues of Stockton, California, and the Presbyterian church correlated to an entry in the opus list of Johnson organs, compiled in Elsworth’s 1984 book, The Johnson Organs. Opus 161 was shipped in 1864 to the “Presbyterian Church, Stockton, Cal. The church is Eastside Presbyterian.” The organ was listed as having two manuals and 22 stops.6 At this time such features as couplers and tremulants were counted as “stops,” and this roughly fit the description of the Piru organ. The façade of the Piru organ is also consistent with the architecture of organs built by Johnson in the 1864 time frame. Elsworth’s illustrations include a console layout of Opus 200 (1866) virtually identical to the Piru organ layout; Opus 134 (1862) exhibits the impost, stiles, and Gothic ornamentation of the Piru organ; Opus 183 (1865) has similar pipe flats and also the console layout of the Piru organ.7 Many other details verified the Johnson pedigree, among them the inscription “H. T. Levi” on the reed pipes. Barbara Owen pointed out that Levi was Johnson’s reed voicer during the time of manufacture of Opus 161.8 The pieces of evidence fell together when Jim Lewis discovered a newspaper photo of Opus 161 in the Eastside Presbyterian Church of Stockton that matched the façade of the Piru organ. The most likely scenario is that Johnson shipped Opus 161 directly to that church. The Gothic architecture of the Johnson façade also reflects the architecture of the Eastside Presbyterian Church façade. A handwritten note on the Piru church document stated: “Pipe organ and art glass memorial windows dedication June 2, 1935 per Fillmore Herald May 31, 1935, a gift of Hugh Warring.”

It is possible that the organ went from the Presbyterian church into storage, and was later moved to its present location in the 1934–1935 time frame. Even so, we can say with nearly absolute certainty that this organ is William A. Johnson’s Opus 161.

 

Tonal design overview

It is obvious from even a casual glance at Elsworth’s study of Johnson organs that the Johnson tonal style was based on a classical principal chorus that included mixtures in all but the more modest instruments. But the voicing style is gentle and refined, and bears great similarity to the late-eighteenth-century English work of Samuel Green, whose meantone organ at Armitage in Staffordshire is an excellent surviving example.9 Tuned in meantone, Johnson Opus 161 would easily pass muster as the work of Green. The tonal contrast between Green and Hook is stark, and the Hook data serve as an excellent counterpoint to the data from the Johnson organ. Green was the organbuilder favored by the organizers of the Handel Commemoration Festival of 1784, who went so far as to have one of Green’s organs temporarily installed in Westminster Abbey for that occasion. King George III paid Samuel Green to build an organ for Saint George’s Chapel at Windsor.

Stephen Bicknell’s The History of the English Organ relates important details of Samuel Green’s work that we find in Johnson’s Opus 161. “. . . Green’s voicing broke new ground . . . . Delicacy was achieved partly by reducing the size of the pipe foot and by increasing the amount of nicking. The loss of grandeur in the chorus was made up for by increasing the scales of the extreme basses.”10 And “Where Snetzler provided a chorus of startling boldness and with all the open metal ranks of equal power, Green introduced refinement and delicacy and modified the power of the off-unison ranks to secure a new kind of blend.”11 The Hooks, like Snetzler, used a constant scale where all of the pipes in the principal chorus at a given pitch had about the same scale and power.

The most basic data set for describing power balances and voicing must include, at a minimum, pipe diameters, widths of mouths, heights of mouths (“cutup”), diameters of foot toe holes, and depths of mouth flueways. The data in this essay are presented in normalized scales for inside pipe diameters, mouth widths, and mouth heights. Tables showing how raw data are converted into normalized scales may be found in the article on the E. & G. G. Hook Opus 322 published in The Diapason, July 2017. The full set of Johnson data and the Excel spreadsheet used to analyze them may be obtained at no charge by emailing the author.12 Also available is the book The Sound of Pipe Organs, which describes in detail the theory and derivation of the models used in this essay.13

 

Pitch, wind pressure, and general notes

The current pitch of the Johnson and Hook organs is dissimilar and should be taken into consideration when observing the scaling charts. The Hook organ is now pitched at A=435.3 Hz at 74 degrees Fahrenheit, while the Johnson organ is now pitched at 440 Hz. The original pitch of the Hook organ was 450 Hz; new low C pipes were added when the pitch was changed to 435 Hz, and the original pipework was moved up a halftone, widening its scales by a halftone. The original pitch of the Johnson organ was approximately 450 Hz; the pipes were lengthened to achieve a lower pitch.14 The Hook and Johnson organs are both tuned in equal temperament. The wind pressure, water column, of the Hook is 76 mm (3 inches); the Johnson organ was measured at 76 mm static and 70 mm under full flow on the Great division. The pressure was reduced during the restoration to 63 mm static. This allowed the pitch of the pipes to drop, making the adjustment to 440 Hz with fewer changes to the pipe lengths; most of the pipes that were originally cut to length had been crudely pinched at the top to lower their pitch. With the reduction in pressure the ears of the 4 Flute à Cheminée, with its soldered tops, achieved a more normal position. 

The Piru room acoustic was reasonably efficient, and while the Johnson voicing is very restrained, it was adequate to fill this room on the reduced pressure. The Piru church seats 109, has plastered walls, wood and carpet flooring, and a peaked ceiling about 30 feet high; the reverberation, empty, as heard with normal ears, is well under one second (this is not the measurement used by architects that erroneously reports much longer reverberation). Elsworth relates that “the wind pressure which Johnson used during this period was generally between 212 and 234 inches [63.5 and 70 mm], and, in rare examples, nearly 3 inches [76 mm].”15 The photograph of the original Eastside Presbyterian Church for which the Johnson was designed implies a larger acoustical space than that of the Piru church.

The compass of the Johnson organ is 56 notes in the manuals, C to g′′′, and 27 notes in the pedal, C to d.

 

Stoplist

The Johnson console was found in poor condition, missing the builder’s nameplate and many of its stop knob faces. Correct stop names were derived from the markings on the pipes and the missing faces were replaced. The original stoplist is reconstructed as follows (Johnson did not use pitch designations):

GREAT

8 Open Diapason

8 Keraulophon

8 Clarabella

4 Principal

4 Flute à Cheminée (TC)

223 Twelfth

2 Fifteenth

8 Trumpet

SWELL

16 Bourdon (TC)

8 Open Diapason

8 Stopped Diapason

8 Viol d’Amour (TF)

4 Principal

8 Hautboy (TF)

Tremolo

PEDAL

16 Double Open Diapason

 

Couplers

Great to Pedal

Swell to Pedal

Swell to Great

 

Blower signal

The above list adds up to 20 controls. The Johnson company opus list describes Opus 161 as having 22 “stops.” This may have reflected the original intention to supply the organ with stops having split basses, which are commonly found in Johnson specifications. The sliders for the Keraulophon and the Trumpet were found with separate bass sections from C to B, professionally screwed together with the sections from tenor C to d′′′. The two additional bass stops would account for a total of 22 “stops.” There are no extra holes in the stop jambs to indicate the deleted split bass stop actions. The extant stopjambs are apparently a later modification from the time of the installation at Piru or before. Elsworth noted that all Johnson organs of this period were constructed with square stop shanks.16 The current shanks are round where they pass through the stopjambs and are square where they connect to the stop action.

Several stop knobs were switched during the 1935 installation at Piru; e. g., the Viole d’Amour in the pre-restoration photo of the right jamb belongs in the position noted on the left jamb with the black plastic label “Bell Gamba,” which indeed is how this stop was constructed. The Swell Stopped Diapason was operated by a knob labeled “Principal” [sic]. The illustrations of the left stopjamb and right stopjamb diagrams provide the correct nomenclature as restored in the correct positions, with the incorrect 1935 nomenclature in parentheses ( ) and the correct pitches in brackets [ ].

 

The wind system

The wind system can be modeled from two viewpoints: the restriction of flow from the wind trunks, pallets, channels, and pipe toes; and the dynamics of the wind. Wind dynamics are fully explained in The Sound of Pipe Organs and are a very important aspect of an organ’s ability to sustain a fast tempo with stability or conversely to enhance the grand cadences of historic literature. The data set on the Johnson allows us to model all of these characteristics. Figure 1 shows the Johnson wind flow model.

In Figure 1 we see a table of the pipe toe diameters and their calculated areas; values in red font are calculations or interpolations from the data (e.g., wood pipe toes are difficult to measure when they have wooden wedges to restrict flow). These areas are measured for a single note in each octave of the compass.

A model for the total required wind flow of the full plenum of the organ assumes a maximum of ten pallets (a ten-fingered chord), as described in the table, and the flow is multiplied by the number of the pallets played for each octave in the compass. The sum of the toe areas of all ten manual pallets in the tutti is 5,057 mm2. The total area of the manual wind trunks is 38,872 mm2, and we see that the wind trunks afford 7.7 times more wind than the tutti requires, so much in fact that the trunks do not at all function as an effective resistance in the system.

Interestingly, the Isnard organ at St. Maximin, France, used the main wind trunk as a strong resistor to dampen Helmholtz resonances in the wind system, and that organ has ratios of wind trunk area to a plenum toe area of only 1.07 for the coupled principal chorus of the Grand-Orgue and Positif, but with no reeds, flutes, or mutations. Helmholtz resonances are the source of what is normally called wind shake, and we would expect some mild wind shake with the Johnson’s large wind ducts and low damping resistance. The author’s notes from 1976 state: “Very little sustained shake . . . a considerable fluctuation in pitch when playing moderately fast legato scales, which stabilizes very rapidly . . . this imparts a shimmer . . . .”

In Figure 1 we also see dimensions of the key channels, pallet openings, and the pallet pull length (estimated from the ratios in the action). These allow us to calculate the relative wind flow of the channels and pallets. We find that there are robust margins in wind flow from the channels to the pipe toes (244% at low C to 737% at high C on the Great). This accounts for the small drop in static pressure at 76 mm to a full flow pressure of 70 mm with all stops drawn. Pallet openings are less robust and flow about 100% of the channel area for the first three octaves and 190% in the high treble.

The underlying dynamics of a wind system are the result of the mass of its bellows plate and the volume of air in the system. These factors produce a natural resonance that can enhance the grand cadences of literature with a long surge in the wind, or it can produce a nervous shake if it is too fast. A grand surge in the wind is characterized by a resonant frequency of less than 2 Hz (cycles per second), and it is most often produced by a weighted bellows. A nervous shake results from a sprung bellows. We correct the latter condition with small concussion bellows in modern organs, but the Johnson organ does not have such devices; instead, it features only a large, weighted, double-rise bellows. 

We can model the dynamic response of an organ by using its wind pressure, the area of the bellows plates, and the combined internal volume of its bellows, wind trunks, and pallet boxes. The model in Figure 2 shows the dynamic response of the current Johnson wind system at a relaxed 1.61 Hz. This low resonant frequency drops further to 1.47 Hz when the pressure is raised to its original value of 76 mm. The author’s notes from 1976 state: “Light ‘give’ on full organ; relatively fast buildup to full flow.” That “light give” is the result of the low resonant frequency of the system. The resonant frequency of the Hook organ was modeled at 1.23 Hz, a value lower than the Johnson, and the Hook chorus does indeed exhibit a slower and grander surge on full organ. Figure 3 shows the modeled resonant frequency at the original pressure of 76 mm for the Johnson organ. The equation for modeling the resonant frequency of a wind system along with a worked example on the 1774 Isnard organ at St. Maximin may be found in The Sound of Pipe Organs, pages 99–113.

 

The wind system in pictures

See the accompanying pictures: Notebook sketch 1, Great windchest, Toeboard, Notebook sketch 2, Notebook sketch 3, Notebook sketch 4, Great pallet box, Pallet springs, Notebook sketch 5.

 

The layout in pictures

“Green’s organs stand on an independent building frame with the case erected around it, rather than being supported by the structure of the case itself.”17 Bicknell’s description of a Samuel Green organ applies equally well to this Johnson organ. The casework is built entirely of black walnut, a wood mentioned by Elsworth in reference to Johnson cases. The organ is situated within the front wall of the church. The original black walnut side panels (typical of early Johnson organs) were found crudely cut up and nailed behind the façade in an effort to make the whole organ expressive through the Swell shades. This had the effect of making the Great division sound like a diminutive Echo division. The typical layout of a Johnson organ is well described by Elsworth: “The framework was arranged to carry the chests of the Great organ and the supporting framework for the Swell, which was usually above the Great organ and slightly to the rear.”18 Such layouts, shown in Figure 4, are common in nineteenth-century American organbuilding. The walkway behind the Great allowed access to the pipes and pallets placed at the rear of that chest, and the rollerboard to the Swell division was normally placed just behind this walkway, allowing access to the Swell pallets that were placed at the front of the Swell windchest. Opus 161 was installed in an opening in the Piru church that was far too shallow to allow the depth of a rearward placement of the Swell division. 

As a result, there is evidence that the Swell windchest may have been reversed, placing its pallets to the back of the windchest, and the chest brought forward over the Great division. Note the lack of clearance between the 4Principal pipe and the bottom of the Swell chest in Figure 5. The internal framework shows signs of crude saw cuts; the order of the notes on the Swell chest is the same as the Great, but it is reversed; the Swell rollerboard appears to have been likewise reversed and now faces toward the walkway where the action and rollers are exposed to damage. 

To say that the Piru layout was cramped would be an understatement; no one weighing over 150 pounds would gain access to the pipes for tuning or to the action for adjustment without damaging the pipework or the key action. The author weighed less (at the time) and was barely able to navigate inside the organ. The current layout is shown in Figure 6

It is also possible that the current layout reflects the original layout by Johnson, but that the Swell was simply lowered to fit the height of the Piru church and brought forward to fit the limited depth available, reducing the depth of the walkway.

Notes and credits

All photos, drawings, tables, and illustrations are courtesy of the author’s collection if not otherwise noted. Most of the color photos were unfortunately taken by the author with an inferior camera in low resolution. David Sedlak used a high quality camera, lenses, and film to produce the high-resolution color photos of the church and its architectural details; these are all attributed to Sedlak.

1. Stephen Bicknell, The History of the English Organ, Cambridge University Press, 1996, Cambridge, pp. 185–187, 190–191, 207.

2. John Van Varick Elsworth, The Johnson Organs, The Boston Organ Club, 1984, Harrisville, p. 18.

3. A detailed study of the E. & G. G. Hook Opus 322 may be found in The Diapason, July, August, and September issues, 2017.

4. Barbara Owen, The Organ in New England, The Sunbury Press, 1979, Raleigh, pp. 18–19.

5. see: en.wikipedia.org/wiki/Boston_and_Albany_Railroad.

6. The Johnson Organs, p. 100.

7. Ibid, pp. 23, 50, 57, respectively.

8. The Organ in New England, p. 275.

9. 5 Organ Concertos, 1984, Archiv D 150066, Simon Preston, Trevor Pinnock, The English Concert.

10. The History of the English Organ, p. 185.

11. Ibid, p. 207.

12. McNeil, Michael. Johnson_161_170807, an Excel file containing all of the raw data and the models used to analyze the Johnson Opus 161, 2017, available by emailing the author at [email protected].

13. McNeil, Michael. The Sound of Pipe Organs, CC&A, Mead, 2012, 191 pp., Amazon.com.

14. The Organ in New England, p. 75.

15. The Johnson Organs, p. 25.

16. Ibid, p. 23.

17. The History of the English Organ, p. 187.

18. The Johnson Organs, p. 23.

 

To be continued.

In the wind . . .

John Bishop
Files
Default

 

What’s in a name?

Did you ever meet someone named Smith? Ever wonder where that name came from? Ever wonder why Smith is such a common name? Your friend John Smith is descended from a blacksmith, or maybe a silversmith. Smith is a common name because centuries ago, a much higher percentage of the population was involved in actually making stuff by hand. How about Cooper? They made barrels. How about Sawyer, Taylor, Shoemaker, Brewer, or Cook? Come to think of it, my name is Bishop—but I know it’s not relevant.

Just like those common surnames, lots of functions and devices in our world have names that are descriptive, and I think many of us seldom stop to notice how accurate those names are.

Likewise, I know that lots of people take for granted how something works. You flick a switch and a light comes on. Don’t bother me with stories about fuel sources, generating plants, transformers, distribution systems, self-burnishing contacts, correct choice of wire gauges, or tungsten filaments.

 

The long and short of it

After graduating from Oberlin, we lived in an old four-bedroom farmhouse in the farmlands a couple miles out of town. It was a lovely place if a little ramshackle. The rent was $225 a month, and there was a natural gas well on the property—foreshadowing the controversial fracking going on now in that area. The electrical system in the house was just terrible, and all the lights and outlets in the kitchen, utility room, and dining room were on one circuit. I was cooking dinner one night when the lights went out. There was toddler Michael, sitting on the dining room floor, a startled look on his face, a black mark on the wall around an electrical outlet, and a pair of scissors on the floor. He looked at me and said, “hurtchoo.”

What was it he did that caused the lights to go out? I know, I know, he stuck the scissors in the outlet. (Today, responsible parents put little plastic pluggy things into the outlets so that can’t happen. In those days, we did have seatbelts in our cars, but not those pluggy things.) What he actually did was shorten an electrical circuit. He tried to use the scissors as an appliance. We’re used to operating devices that are designed to consume electricity, whether it’s a motor we use to make daiquiris, a heating device we use to melt cheese on a piece of bread, or a light bulb that illuminates our world. Each of those items “burns” electricity to do its job.

The wiring in your house is all in circuits. Each circuit originates at an electrical panel, goes to whatever appliances it’s supposed to run, fuels them, and returns to the source, which is protected by a circuit breaker that shuts off the circuit if something goes wrong. (Our house in Oberlin had fuses, which have the same function as a circuit-breaker.) If something happens to connect the outgoing and incoming sides of the electrical circuit before it gets to the appliance, the result is a “short circuit.” Michael’s pair of scissors was not designed to perform a function when fed with electricity. All it could do was make a big spark. He “shorted out” the circuit. We laugh now, but bad things could have happened.

A couple more simple points. That circuit breaker I mentioned is designed to break the circuit (turn it off) when it’s overloaded by a short circuit, or by the attempt to run too much power through the circuit by plugging in a vacuum cleaner in addition to a space heater. Too much power and the wires heat up. If there’s no safety system, they start a fire. The old-time fuses have a piece of wire in them engineered to carry only a certain amount of power. When that was exceeded, the wire burned safely inside the little glass enclosure.  

And many of the circuits in our houses are actually left open in the form of outlets. A ceiling lamp is a closed circuit, but an outlet doesn’t become a complete circuit until we plug something in—not a pair of scissors, but something that includes an appliance that consumes electricity. 

 

Keep the pressure on

Water towers are architectural icons and infrastructure workhorses on Manhattan Island. Every building more than eighty feet high needs one, and there are a lot of buildings more than eighty feet high in Manhattan. We can see thirteen water towers from our apartment in lower Manhattan. They are necessary here because there are simply too many faucets and toilets for the municipal water provider to be able to supply pressure hundreds of feet in the air to thousands of buildings. So a building has a tank on the roof and a pumping station in the basement. Filling the tanks works something like a toilet bowl. Water is pumped into the tank. When it’s full, a ball-cock valve operated by a float turns off the pump. As water is used, the float goes down with the water level and turns on the pump to maintain the proper level.  

The water tower on an average apartment building holds around 10,000 gallons, and the pumps are capable of filling a tank in two or three hours. Larger buildings have huge internal tanks mounted high inside. The Empire State Building, which is 1,250 feet tall, has water tanks every twenty floors. Buildings that size use as much as 40,000 gallons per hour.

I imagined that the source of the water pressure from a rooftop tank would be the weight of the water as affected by gravity, and I read that in a couple news stories, but I read on a “science-fact” website that it actually comes from hydrostatic pressure, which is a factor of elevation. The higher in the air the tank is located, the greater the pressure. Shameless and unscientific rounding off of numbers I found at <www.howstuff works.com> shows that every foot of elevation produces about .45 PSI (pounds per square inch) of pressure. A tank that’s a hundred feet up produces about 45 PSI, which is the kind of pressure we’re used to when we open a spigot to take a shower or wash the dishes.

There is one way that the weight of water plays a role in this system. The tanks are built like old-fashioned barrels (built by coopers) with wooden staves held in place by iron hoops. The hoops are closer together at the bottom of a tank, and spaced increasingly further apart toward the top. The graduated spacing is similar on all the tanks, which makes me think there’s a mathematical ratio involved, something like Pythagoras’s overtone series. That provides extra strength down low to contain the great weight of water at the bottom of the tank. Water weighs about 8.35 pounds per gallon, and when you stack it up in a tank, the weight is concentrated toward the bottom. A 10,000-gallon tank holds more than forty tons of water!

There are two companies in New York City that still build water tanks: the Rosenwach Tank Company, and Isseks Brothers, both located in Brooklyn. Rosenwach builds between two and three hundred tanks each year. The tanks must be serviced annually to remove sediments from the water, and they usually last about forty years, though the Rosenwach website (www.rosenwach tank.com) says that some tanks made of redwood are still in service after ninety years. Wood is considered the best material because it is hoisted to lofty roofs relatively easily—it would cost a fortune to lift a 10,000-gallon steel tank to the roof of a twenty-story building—and because it has terrific built-in insulation qualities. Imagine if your source of cold water was a metal tank on a sunny roof. The wood is not treated with any paint or preservatives so as not to taint the water. Rosenwach uses so much lumber that they have a sawmill located in the heart of Brooklyn.

 

Wind regulators

The principle I described of graduating the spacing of the hoops around a water tank appears in many other ordinary facets of our life. Long runs of pipes for fire-suppression sprinkler systems are visible in the fellowship halls of many church buildings. Notice how they’re larger in diameter at the end where the water originates than at the end of the run. This accounts for the ever-smaller demand for the volume of water as you pass each sprinkler head, and maintains the appropriate amount of pressure for the last sprinkler in the line.

This exact principle exists in pipe organs that have multiple wind regulators (reservoirs). The windline is largest in diameter where it enters the organ from the blower room, and the diameter decreases as you pass the regulators, ensuring that the wind pressure is adequate at the end of a long run.

We can compare the wind system of a large pipe organ with the water system in Manhattan. A rooftop water tank is both a reservoir and a pressure regulator, kept full and ready for use by a pump, and equipped with a valve that fills the reservoir as water is used. An organ regulator is kept full of air by a pump (the blower), regulates the pressure through the use of weights or springs, and has a valve that keeps it full as pressure is used. The valve is typically a curtain valve that works something like a window shade, connected to the top of the regulator with string or chain that runs across a system of pulleys. In a water system, pressure and volume is used when we fill a teakettle. In a pipe organ, pressure and volume is used when we play a hymn.

 

Electricity in pipe organs

You walk into the chancel, change your shoes, open your briefcase, put something up on the music rack, slide onto the bench, and turn on the organ. What’s happening? You have started a big electric motor, and if your organ has electric action, you’ve also turned on a rectifier. The motor turns a fan (the organ blower), which blows air through the organ’s windlines to the reservoirs, which inflate to a controlled height, and create stored wind pressure. Until you play a note, the organ is idling, sitting still at a constant pressure.

Did he say rectifier? What’s a rectifier? What needs to be rectified? Is there something wrong? We use electricity in two basic forms, AC (alternating current) and DC (direct current). Electricity is polarized—one side is positive (+), the other is negative (–). In direct current, the polarization is constant—positive is always positive, negative is always negative. In alternating current, the sides alternate, swapping positive and negative back and forth at a rapid rate. We refer to 60-cycle current because standard AC power swaps sides 60 times a second. Fluorescent light tubes emit a 60-cycle hum.

Our household (and church-hold) electricity is AC power at 120 volts (volts is a measure of power), but pipe organ actions are designed to operate on DC power at around twelve volts. A rectifier is an appliance that converts 120VAC to 12VDC, rectifying the discrepancy. (While the voltage of house current is standardized, the DC voltage in pipe organs varies, usually between 12 and 16 VDC.) How does it work? A rectifier contains a transformer—an appliance that transforms AC power to DC power.

George Westinghouse and Thomas Edison were both pioneers of the industrial and residential use of electricity, and both are credited with the invention of many related devices and processes. They both found financial backers who supported the construction of neighborhood-wide systems to light houses—J.P. Morgan’s house on Madison Avenue in New York was the first to be illuminated by Edison. Edison was a DC man, and Westinghouse focused on AC power. Neither was willing, or perhaps able, to promote both. As the public was learning to accept the concept of having this mysterious power in their homes, there was a debate comparing the relative safety of the two systems, and Westinghouse and Edison each went to great lengths to try to discredit the work of the other by publicizing levels of danger. When the first electric chair to be used for executions of prisoners was built using DC power, Westinghouse and AC power gained traction in the public eye. If DC could kill people, we don’t want it in our houses. It was political. Today, when we hear of a construction worker getting electrocuted, it’s proven to us that AC power can kill, too. Michael was lucky.

 

Pipe organ wind

When I talk about pipe organ wind, I keep mentioning reservoirs and regulators. Don’t I really mean bellows? Like the short circuit, and the circuit breaker, I suggest we use the name that best describes what the thing is actually doing. A bellows produces a flow of air. A blacksmith uses a bellows to blow on the fire in his forge just as we use a bellows at our living room fireplace.  

A reservoir is a storage device. A rooftop water tower is a reservoir. In modern pipe organs, the bellows have been replaced with electric blowers, so what we might call a bellows under the windchest of the organ is actually a reservoir. But the reservoir also regulates the wind pressure. We use weights or spring tension to create the pressure. The more weight or the heavier the springs, the higher the pressure. But in order to create pressure, we also have to limit how far the thing can open—that’s another function of the curtain valve. The organbuilder sets it so the valve is closed when the reservoir is open far enough. Otherwise it would inflate until it burst, which is the air pressure equivalent of a short circuit. So the balancing of weights, springs, and limit of travel determines the wind pressure. And, the curtain valve I mentioned earlier opens to allow more air in as you consume air by playing. So I think the most accurate term to describe that unit is “regulator.” Reservoir is correct, but incomplete. The rooftop water tank is also a regulator, though the regulation of pressure happens automatically as a function of physics—remember that hydrostatic pressure. Hydro means water, static means “lacking in movement.” You get pressure regulation without doing anything!

 

Stop and think about it

Many of the common names for organ stops are descriptive, even definitive. “Prestant” comes from the Latin, prestare, which means “to stand before.” So a Prestant, by definition, is an organ stop that stands in the façade. Many organs have misnamed Prestants. A Chimney Flute is a capped pipe (usually metal) that has a little chimney sticking up from the cap. The purpose of the chimney is to emphasize the third overtone (223 pitch). That’s why a Chimney Flute is brighter than a Gedeckt.

I don’t need to say much about Clarinets, Oboes, Trumpets, or Flutes. But a Harmonic Flute is special because the pipes are twice as long as Principal pipes, and the characteristic hole halfway up the resonator breaks the internal sound wave in half, so the double length produces normal pitch, but with a much richer harmonic structure.

Diapason is a mysterious word, until you look it up. I found two good applicable definitions: “a rich, full outpouring of sound,” and “a fixed standard of pitch.” Go to <www.diapason-italia.com&gt; and you find an Italian manufacturer of high-quality audio speakers—“a rich, full outpouring of sound.”

Quint = fifth. A 223 Quint speaks the second overtone above fundamental pitch—one octave plus a fifth. A Quintadena emphasizes that overtone—that’s why it’s brighter than a Bourdon. 

Tierce = third.  A 135 Tierce speaks the fourth overtone—two octaves plus a third.

A Resultant is a tricky one.  Turns out that if you play 16 and 1023 pitch together, your mind’s ear is tricked into thinking that you’re hearing 32 pitch, because 16 and 1023 are the first two overtones of 32. The result is that you imagine you’re hearing a 32 stop.  Hah!  Fooled you!

By the way, why does blowing on a fire make the fire bigger? Simple. Fire uses oxygen as fuel. Throwing a blanket over a fire cuts off the oxygen supply, as does the acolyte’s candle-snuffer. Blow air on a fire and you increase the oxygen supply. Poof! S’mores, anyone?

 

Louis Debierre Choir Organ, 1884: Choir Organ #53

Roy Redman

Roy Redman grew up in north Texas and graduated from Saint Jo High School. He holds a Bachelor of Arts in Music degree from the University of North Texas, and a Master of Sacred Music degree from Southern Methodist University. After experience with several Texas organbuilders, he began Redman Pipe Organs in 1970. The first new tracker action organ was built for St. Vincent’s, Euless, Texas, in 1971. The tracker action organ currently under construction will be Opus 100 for Calvary Lutheran in Richland Hills, Texas. Roy Redman is a member of the American Guild of Organists and was an early member and past president of the Organ Historical Society. He is a founding member and past president of the American Institute of Organbuilders, and holds the Fellow certificate from that organization.

Default

In 1967 I heard that there was an interesting old organ in St. Peter Catholic Church in Bordelonville, Louisiana. I went to see the organ and found a small completely encased instrument in a filagree case with a handsome inlaid nameboard indicating that it was built by Louis Debierre, Nantes. The organ was not playable due to a bad bellows, but a peek inside revealed some very interesting wood pipes with valves and other interesting constructions. 

Rachelen Lien and other members of the New Orleans chapter of the Organ Historical Society also visited the organ, and it was placed on the Extant Organs List of the OHS. We were all interested in the fate of the organ, and kept in touch over the years with Monsignor Timmermans, the pastor of the church. Eventually, we learned that Fr. Timmermans had retired and had stored the organ at his residence in Mansura, Louisiana. 

Over the years I visited the organ again several times and purchased it in 2012. Sadly the years of storage had taken its toll in damage to the instrument, but I thought it still very restorable. It was obviously to Fr. Timmermans’s credit that the organ survived at all. Here is Fr. Timmermans’s interesting letter about the history of the instrument:

 

Dear Mrs. Lien:

Sorry for the delay of my answer to your request for info on the Debierre organ. I’ve been trying to get some details on its history but with little success so far. The old organ was in the choir loft of St. Peter Catholic Church in Bordelonville, Louisiana. The pastor was Monsignor Isidore Dekeulaer, who was from Belgium. When I was visting with him (around 1960) he showed it to me and I was very impressed. . . . He retired in 1969 and went back to his native country to take care of his older and blind brother (also a priest). He died unexpectedly in 1971.

To my great surprise, he left this organ to me in his last will. One of his successors [Fr. James Roy] called me around 1978 to get some people to move the organ out of the choir loft, because they were restoring the church and it was just in the way. If I would not pick it up in three days, he would throw it down from the loft (!).

Of course, I wanted to store it in my workshop for preservation and got some strong men to move it to my workshop.

I’m still trying to get more info from some old parishoners. I found in the history of that church that there were six previous pastors from France between 1900 and 1923. I have a strong feeling that one of them, Fr. Henry Jacquemin, who was an excellent musician and organist, could have been the one who brought this instrument from France to Bordelonville.

I’m very happy that I’ve been helpful in keeping this historic organ from destruction and that it is in the good hands of Roy Redman. I’m still trying to get more information . . . and will keep you updated.

God bless you and your wonderful work.  

Monsignor John Timmermans

Mansura, LA

Pastor Emeritus, Sacred Heart, Moreauville, LA

 

After moving the organ to my workshop in Fort Worth, Texas, I set about finding information about the builder, his work, and this organ in particular. I learned that Louis Debierre (1842–1920) worked near Nantes, France, and had a factory with 50 workers. He is known to have built over 500 organs and to have developed very efficient ways of working to produce organs of very high quality. He was quite an innovator and held many patents in organ construction, including the so-called polyphonic pipe, allowing one pipe to play several pitches.  

Although he built many large organs, his principal output was small organs to be used in a chapel or as a secondary choir organ in a large church. To many, he is largely and unfortunately unknown because of being obscured by his colleagues, including Artistide Cavaillé-Coll. Little is written about him, except a small book by Pierre Legal, entirely in French.

The research and restoration of the small instruments by Debierre has, however, been taken up by Mark Richli, an organist in Zurich. I found his extensive article on the internet, and he found my early postings asking for information on the builder and the organs. He has now supplied us with an amazing amount of information. His first email to me of March 24, 2014, informed me that we had organ number 53, a number that was stamped near the knee swell, and we had not found. He further sent me a photocopy of the factory record book that shows the organ was sent to Avoyelles (parish name), Louisiana, on October 1, 1886. The bench and pumping handle were missing from the organ, and Mark has supplied us with photographs and detailed measured drawings so that these could be reproduced.

This even included the turned trestle piece that connects the legs of the bench together with measured detail on the legs themselves. See the several photographs.

Now let us turn to the organ itself, its specifications, and its “secrets.”

 

Stoplist

Bass C1–b24 Treble c25–g56

Quintaton 16 (1–12 513) Quintaton 16

Diapason 8

Violoncelle 8

Bourdon 8 Bourdon 8

Flute 4 Flute 4

 

Transposing keyboard—11 semitones

Knee-operated Swell

Bellows with foot-operated feeders

Decorative fretwork case

Antique ivory keys

Decorative bench

Added electric blower

Mechanical key and stop action

60 X 65 X 65 tall

On casters for easy moving

 

Details

First of all, the organ is an absolute marvel of engineering for compactness without overcrowding the pipes. With each rank, C1 to b24 are arranged as a W shape, and c25 to g56 arranged as an A shape. This obviously allows the pipes to nestle together in the most compact way without overcrowding.

This is all made possible by one large rollerboard that sits immediately behind the knee panel. It also has double roller arms to allow the pushing motion of the keys to become a pulling motion for the trackers going down to the windchest. Inside the chest the pallets are opened in the center by a short backfall. This obviously allows maximum wind to be supplied by the small and very narrow pallets. The stop action goes down through the very middle of the windchest to rollers below the chest, which move the sliders directly.

The 16 Quintaton begins as a very effective 513 with wood pipes speaking three pitches by means of valves. We wondered how this could be, since normally opening a hole in a pipe simply produces a bad sound. Each valve is removable for service and adjustment, and we found a mitred tube inside each one! So, it effectively becomes a chimney flute when the valve is opened, and the slight change of timbre is not noticed at these piches. The Quintaton becomes metal by means of very nice tin pipes at c25. See the picture comparing the Quintaton to the Bourdon pipe of the same pitch. Notice the difference in diameter and the height of the mouth cut-up.

The Bourdon 8 also begins with pipes speaking three pitches. It changes to capped tin at c25, and then to tin harmonic flutes at c36. It really opens up toward the top of the compass to the extent that one can easily accompany a solo on the one stop.

The 8 Diapason is of large-scale tin pipes and is rather powerful. All the metal pipes are scroll tuned and are held in place by sky racks and turning latches.

The 8 Violoncelle is of smaller-scale tin pipes, and as edgy as expected, but not so much as modern strings tend to be.  

The 4 Flute has open wood bass pipes and changes to tin at c25. These pipes have a rather bright tonality such as we would expect from a 4 Principal.

Overall there is much to learn and appreciate from this organ. It certainly is unlike organs built on this continent, but extremely suited to its intended use. We owe a great gratitude to those who have assisted in its restoration and preservation.

In the wind. . . .

John Bishop
Default

Mazel tov to muscle tone

We have a close friend in Maine who has always taken pride in his self-sufficiency. He built his own house, and in the twenty-five years he and his wife have lived there, he has done all the maintenance and improvements himself. As it is a rural house, there is extra work involved, like plowing a half-mile driveway, clearing brush and trees, and mowing a large lawn. They are just across the river from us, so like us, they have waterfront chores like taking docks and moorings in and out of the water. He is a tough and stubborn guy in his early seventies, and last winter he had a stroke.

I visited him in the rehab center where he spent several very difficult months learning to walk with new limitations, straightening out his speech, and adjusting to his new circumstance in general. His right arm and hand are now pretty much useless, and he was lamenting the loss of his “chain saw arm.” He could not imagine how he was going to be able to get the snowplow off his pickup truck, and the dormers on their roof needed shingle repairs. During that visit, it was simply not crossing his mind that he would likely not be able to do those things again.

Wendy and I had dinner at their house last week and were brought up to date on all those issues. He hired someone to repair the shingles, a friend took the plow off his truck, and he decided they would not put the docks in the water this year. In fact, he put his boat on the market. And though his wife is energetic and sprightly, they are considering selling their house and moving into a condominium, or even, dare they admit, an assisted living facility. With all those changes imposed on their lives, my pal is grateful that his speech is fine, and that with some difficulty he is able to walk, but he is astonished at the uselessness of his arm. “It hangs off my shoulder; I know it’s there. It hurts and itches sometimes, but I can’t make it move.”

Since that dinner, I have been reflecting on the miracle that is the human body, and the incredible things people can learn to do. All of us who are born with bodies that are normal and complete start with roughly the same equipment. Some people have little dexterity. The private nickname we have for one friend is “Oops.” But then there is the fellow who can throw a ball ninety feet and reliably hit a target about one-foot square, and there is the woman who can jump, twirl, and somersault on a beam that is ten centimeters (3.9 inches) wide.

The world of music is full of incredible examples. The human hand is the same apparatus that handles the “neck end” of a violin or guitar, the keys of an oboe or piano, or the strings of the harp. Have you ever shaken hands with a harpist? What may seem to be the simplest instrument is perhaps the most miraculous—the human voice. Stop and think what an incredible feat it is to simply match a pitch with your voice. How do we know exactly the tension of the countless muscles involved that will create that A-flat out of thin air? A choir starting a piece, a cappella, with each member confident of the pitch, volume, and timbre, is a dramatic example of human muscle control.

No musician can play two identical performances of the same piece. We study, train, and practice, trying to make accurate plans for where our fingers will go, where we want to emphasize something, where we want to bring something forward. We write fingerings into our scores, intending to use the same sequence of fingers on each sequence of notes in the hope that we can eliminate confusion. But something always comes up in performance that was not part of the plan. Maybe we got distracted. Or maybe something wonderful happened that never did before. It’s a thrill when you surprise yourself in performance with a special lilt, a delicious ritardando, or a thrilling and dramatic crescendo.

 

It’s a control issue.

Let’s take that muscle thing a little further. My friend’s stroke did not spoil the muscles in his right arm; it interrupted the electrical gear that operates them. The human nervous system is the amazing wiring harness that transmits our thoughts into muscular impulses. Our bodies include several hundred “visceral” muscles, those that perform involuntarily, running such equipment as our hearts, eyelids, and diaphragms. There are something like 320 symmetrical pairs of skeletal muscles, those that we exercise control over. When I googled that, I was surprised to learn that there seems to be disagreement over the actual number, apparently because some muscles can be considered as part of more complex structures and not counted separately.

I am something of a mechanical geek, which has allowed me to notice that controls of a backhoe, the most common piece of excavation equipment, are roughly equivalent to the nerves that operate our arms and hands. Each lever has opposite motions—left and right, up and down, flex and open—and the operator uses levers in combinations to make fluid compound motions. The boom extends, the bucket opens, the machine swivels all at once.

Watch a virtuoso musician playing a brilliant passage and think of all nerves firing to make those hundreds of muscles do exactly the right thing, at the right time, with the right amount of force. That’s some data stream.

Many musical instruments, including winds and strings, require the musician to participate in the production of tone, and the volume of every musical instrument is controlled by the muscular impulses of the musician. That is, every instrument but one. An organ pipe is perhaps the simplest of musical instruments, and certainly the least versatile. Any organ pipe can produce just one pitch at one volume level and one timbre. Period. Big deal. It is for that reason that many orchestral conductors consider the pipe organ to be expressionless. Conversely, I claim that a pipe organ, especially a large organ with electric stop action, is the most expressive of musical instruments. The catch is that the musician operates it remotely. The mechanics of the instrument serve as an artificial nervous system, allowing the musician to control the instrument. While I know I am opening a path for cruel jokes (he plays that organ like a Mack Truck!), there is a real analogy with that excavator operator causing a twenty-ton machine to move with fluid, human-like motion.

 

The musician’s workstation

I am thinking about organ consoles these days because I am working on one in my personal shop at our house in Maine. It is a three-manual job of modest size, about fifty years old, and I am refitting it with a new nervous system, that fantastic array of solid-state controls concealed in a series of small black boxes that have brought such sophisticated levels of control to the modern organist. Those black boxes were provided by a supplier who incorporated the original specifications of the organ, plus a slew of features that I wanted to add. There is a small LED screen at the heart of the control panel, the controls that control the controls.

The keyboards have been recovered and polished to provide a lovely visible sheen, but more importantly, a smooth surface to meet the musician’s fingers. There are no sharp edges or snags that could divert attention, or worse, cause injury. (I once covered a keyboard with blood from a deep slit in my finger caused by the jagged edge of a broken ivory, admittedly buried in my score enough that I did not look down until the piece was over.) The best keyboards are works of art whose beauty helps to inspire the musician.

All the stopknobs and pistons need to feel alike. A squeaky knob or a piston that clicks will distract the player and interrupt the flow. While it is impossible for everything to be perfect, the goal of the organbuilder is to make the machine disappear, or at least to minimize the machine’s ability to intrude on the sacred space between the musician’s heart and the sound of the pipes. I am requiring the musicians to take care of the arms, hands, and fingers part of the system.

Besides the switches and buttons that actually control the functions of the organ, the surrounding cabinet needs to be an inspiring workstation. The wood should be beautiful, the finishes smooth, the geometry perfect. All of these factors add to the console’s status as an extension of the musician’s body.

 

Cleanliness is . . .

There is a terrific hardware store in Damariscotta, Maine, the town that adjoins our village of Newcastle, and I go there at least every few days. It has a large parking lot with head-in spaces in front of the store, and a row of spaces you can enter from behind, leaving your car facing across an open lane at the store. There is typically a row of tradesman’s pickup trucks and vans lined up there, and I always notice which trucks are kept neat inside, and which have their dashboards piled high with soda cans, coffee cups, receipts, sandwich wrappers, tools, and hardware samples. I have used those observations to inform who I hire to help with our house. If a painter’s truck is covered with slobbers of paint and filled with empty coffee cups, I don’t want him in my house.

Traveling around maintaining organs provides the same experience. Some organ consoles are always clean and free of clutter, and some are nasty depositories that could have come straight from the dashboard of a plumber’s pickup truck with the same coffee cups, candy and food wrappers, nail clippers (ick), and hairbrushes. One organist I worked for had long thick gray hair and the console looked like the couch in a house with ten cats. Her hair tangled up in the pedal contacts causing dead notes. We called it the “Hairball Church.”

Often, those dirty consoles are out in the open in the front of the church for everyone to see. It’s hard to imagine why a musician would choose to present such a front for the worshippers. And it’s hard to imagine how a sloven could produce beautiful music from such a sty. I understand the value of having pencils, note pads, “stick-ems,” and even paper clips handy (though paper clips falling into keyboards have necessitated many an emergency call!), but you should take your trash with you when you leave. The one that really gets me is the half-sucked lozenge sitting on the open wrapper. You didn’t finish that lozenge? Really? A few paragraphs ago, I referred to an organ console as an extension of the musician’s body, perhaps a little idealistic if the console is a mess.

§

A modern solid-state organ console is loaded with creative functions that allow the musician ever higher levels of control over the instrument. Multiple levels of memory and piston sequencers are two concepts that were really not possible before the introduction of solid-state equipment. Like the old codger who starts a conversation with a grandchild with the words, “When I was your
age . . . ,” I like to share that it was a big deal when my high school purchased four four-function calculators (add, subtract, multiply, divide). But it was only a few years later, when as an apprentice, I participated in installing one of the earliest solid-state combination machines. A lot of smoke came out.

As incredible as these machines can seem, organ consoles built a century ago featured sophisticated functions requested by the pioneers of symphonic organ playing. Lynnwood Farnam was organist at Emmanuel Church in Boston when Casavant’s Opus 700 was installed there in 1917. That console featured such controls as:

Piston “throwing off” all manual 16 stops, also Quint 513 and Tierce 315

Piston “throwing off” all subcouplers

Swell octave couplers to cut off Swell 2 stops

Other manual 16 and 2 stops not to be cut off by octave or sub couplers.

What was he thinking? That was barely the time when you could expect a new organ to include an electric blower. (After sitting in storage for more than ten years, that organ has recently been renovated by Rieger and installed in a concert hall on an island in China.)

Mr. Farnam was involved in the design of another console that I have written about before, that of the new Skinner Opus 707 built in 1928 for Grace Church, New York City. Farnam’s dear friend George Mitchell was organist there, and together they dreamed up a behemoth console that could seemingly do anything. The console controlled a double organ, Chancel and Gallery, with a total of 167 stops and 133 ranks. There was a separate crescendo for each organ. Above the Gallery Crescendo pedal there were two toe studs, marked “Regular” and “Orchestral.” The Chancel Crescendo pedal could be programmed from the console, using a wire-and-plug system located in a drawer under the bottom keyboard. A programmable crescendo in 1928! Besides the two crescendo pedals, there were five expression pedals, with a sliding control switch that allowed the organist to assign any expressive division to any pedal.

It is amazing to think of that level of electrical control in a contraption built in 1928. It was the product of some of the world’s most creative musical minds expanding the expressive possibilities of the most complex and least personal of all musical instruments. It is as if a puppeteer added 320 symmetrical pairs of strings to the marionette, mimicking the repertory of human skeletal muscles.

Because of that heritage of creativity, combined with the added dimensions made possible with solid-state controls, the supposed least expressive of musical instruments eclipses the expressive capabilities of the symphony orchestra. It can be softer than the softest, louder than the loudest, and with a few flicks of fingers, create dramatic crescendos between extremes.

When Wendy and I lived in Boston, we had series tickets for the Boston Symphony Orchestra, with seats near the curve just above the stage. During the first performance using the newly renovated organ, with Simon Preston playing the obligatory Organ Symphony by Saint-Saëns, we marveled at the facial expressions and communication between orchestra members as the super low notes came from the organ during the slow movement. No orchestral instrument can go as low as the organ, and it is partly because of the limitless supply of air that the organ can blow whistles that big.

Are you surprised when I suggest that the organ is the least personal of musical instruments? I don’t feel that way when I play, rather I feel at one with the instrument, excited by the range of things I can make it do, excited by the way its sound rings in a huge room, excited by the way my musical impulses can make a whole room ring. It feels very personal to me, but as an organbuilder, I cannot separate all that from the fact that the organ is a machine operated by remote control. Like a pantograph that magnifies the size of a drawing using proportional levers, so the machine that is the organ magnifies the vision of the musician. But please, take your trash with you.

The restoration of the chancel organ at the Cathedral-Basilica of Notre Dame de Québec

Andrew Forrest

Andrew Forrest began with Létourneau in February 1999 and, as the company’s artistic director, oversees all of the company’s various projects. He travels regularly to meet with clients, to supervise the company’s on-site tonal finishing, and to speak about the pipe organ. Areas of particular interest for Forrest include pipe scaling and reed tone. Among others, he has completed studies of the Wanamaker Organ’s String division and the 1955 Aeolian-Skinner pipe organ at Winthrop University. He was on the organizing committee for the joint AIO-ISO 2010 convention in Montréal, and from 2011 through 2014 served on the board of directors for the American Institute of Organbuilders. More recently, Forrest was elected vice president of the Associated Pipe Organ Builders of America in the spring of 2017. He holds a Bachelor of Arts degree from Carleton University in Ottawa, Ontario.

Default

The Cathedral-Basilica of Notre-Dame de Québec is an important and historic location for the Catholic Church in North America as it was here the Church of Our Lady of Peace (Église Notre-Dame-de-la-Paix) was built in 1647. It became the first parish church north of Mexico in North America in 1664 and was dedicated as the Church of Our Lady of the Immaculate Conception (Église Notre-Dame-de-l’Immaculée-Conception). Ten years later, the church was made the cathedral of the newly established diocese of Québec under Bishop François de Laval. The cathedral was almost completely destroyed during the battle for Québec in 1759 and was rebuilt between 1766 and 1771 from the remaining walls to resemble the previous building.

Further changes and improvements to the cathedral’s design took place in the nineteenth century, including the addition of a neoclassical façade, and the cathedral was elevated to the status of basilica in 1874 in honor of the diocese’s founding 200 years earlier. In the twentieth century, a devastating fire on December 22, 1922, forced the parish and diocese to rebuild again from singed outer walls. The reconstruction project took eight years, and while modern construction materials and techniques were employed, the cathedral’s architecture was again modeled after its predecessors.

The church was home to a pipe organ by an unknown builder as early as 1657, and this was followed by a number of instruments of increasing size and complexity by Robert Richard, Thomas Elliot, Louis Mitchell, and the Casavant brothers among others. Casavant’s Opus 211 from 1904, an electric action instrument with 46 stops over three manuals and pedal, was destroyed in the fire of 1922. The rebuilding of the Cathedral-Basilica in the years following saw the installation of three new pipe organs by Casavant Frères between 1924 and 1927: a seven-stop instrument for the Chapel of St. Louis, a 25-stop instrument for the sanctuary, and a grand 69-stop instrument in the church’s gallery. The organ in the Chapel of St. Louis remains as it was in 1924 apart from two stops having been swapped between the Grand-Orgue and the Récit divisions. While the history of the sanctuary organ follows, the gallery organ currently awaits rebuilding after some spectacularly unskilled alterations in the 1970s and a corrective reconstruction from 1983 through 1985.

The sanctuary organ was built in 1924 as Casavant’s Opus 1024 and is installed behind the first two triforium bays on the south side of the sanctuary; it is invisible from the nave. The instrument’s terraced two-manual console was originally installed opposite in the north triforium where it was situated in the midst of an amphitheatre-like arrangement of benches. The organ was built with electro-pneumatic wind chests with ventil-style stop actions and is tonally similar to other instruments from the period with its generous number of foundation stops. When the gallery instrument was installed in 1927, the sanctuary organ was made playable from the gallery organ’s enormous four-manual console.

Subtle differences from Casavant’s conventional practices at that time include the placement of the 8Trompette stop in the Récit division instead of the Grand-Orgue, as well as the inclusion of independent mutations stops in the Récit. It is said the French composer and organist Joseph Bonnet was responsible for the placement of the 8 Trompette, having drawn an arrow on the organ’s proposed stoplist to move the stop from the Grand-Orgue to the Récit. Bonnet was likely consulted on the organ’s specification by Henri Gagnon, a gifted Québecois organist and titulaire at the Cathedral-Basilica from 1915 until his death in 1961. Gagnon lived in France from 1907 to 1910 and studied with Eugène Gigout and Charles-Marie Widor among others; he returned to France during the summers of 1911, 1912, 1914, and 1924 for further studies with Widor and Bonnet.

From the start, the instrument served the parish’s daily Masses, providing commentary on the liturgy and accompanying students from the nearby Grand Séminaire. Opus 1024 and the students from le Grand Séminaire were also sometimes heard in alternatim with les Petits Chanteurs de la Maîtrise (the chapter’s boy choir) who would sing from the gallery, accompanied by the gallery organ, Opus 1217.

The transfer of le Grand Séminaire to new facilities in the Ste-Foy neighborhood of Québec City in 1959 brought an end to the singing of the daily Mass in the cathedral. The explicit need for a sanctuary organ disappeared as a result, and with the instrument reportedly suffering from electrical problems, Opus 1024 was switched off at the blower’s breaker and abandoned.

It wasn’t until after Marc d’Anjou’s appointment as titular organist to the cathedral in 1993 that Opus 1024 was heard again from the distant gallery console. Some cleaning, minor repairs, and tuning followed, and this helped show the organ’s potential utility. The sanctuary console was carried down soon after from the triforium to the floor of the sanctuary where it was installed to the south of the altar. To provide the console and its electro-pneumatic mechanisms with wind, a crude flexible wind line was lowered from the triforium level inside a nearby column. From the column, the wind line snaked across the floor to the console where it entered through a hole cut into the side panel. The organ itself later suffered some minor water damage while the exterior of the cathedral was being sandblasted, but the affected portions were repaired soon after.

The contract to restore the sanctuary organ was awarded to Orgues Létourneau after a thorough evaluation process and a generous grant was provided to the cathedral towards the costs of the organ’s restoration by the Conseil du patrimoine religieux du Québec. A formal contract was signed in March 2014, the console was removed and wrapped for transit the following August, and the instrument itself was dismantled one month later. The wind chests’ internal components, some wind system elements, and much of the organ’s pipework were removed for transport to and restoration in the Létourneau shops.

The restoration of the instrument’s electro-pneumatic wind chests was a straightforward but time consuming process. All old leather diaphragms on the pouchboards were removed and replaced, while the primary actions were completely restored with new leather, felts, and leather nuts as well as new threaded wires. The wind chests have ventil-type stop actions, meaning the chests are subdivided laterally into chambers under each stop. The flow of wind to each chamber determines if the stop above plays with the flow being governed by a pneumatically operated valve. Given the quantity of wind going to each stop, these ventil valves are necessarily large and their prompt operation via pneumatics is paramount. The ventil stop actions were thoroughly restored with new materials similar to the originals and adjusted on-site for optimal operation.

The organ’s wind system was also comprehensively restored, including the recovering of its two enormous single-rise wind reservoirs and the blower’s static reservoir. The external curtain valve regulators were all restored, the flexible wind line connections under each chest were replaced, and the Récit’s tremulant unit was refurbished. The original nine-stage expression motor was replaced with a new pneumatic whiffletree-type unit with 16 stages.

Opus 1024’s pipework was cleaned and repaired as needed in our pipe shop. We experimented with softening the Grand-Orgue’s 8 Montre stop for a less overbearing presence but its already-smooth tone only became more flute-like. We found ourselves working at cross purposes with this stop’s nature, having been built to a large scale from heavy lead and voiced with wide slots as well as leathered upper lips. We reduced the strength of the stop only slightly but removed the leather from the upper lips, improving the pipes’ tone and speech. We also recast the Grand-Orgue 8 Salicional—its original voicing sounded more like a Dulciana with little intensity or specific color­—to produce a rich string tone with enough presence to color the other foundation stops.

New II–III Fourniture and 8 Trompette stops were added to the Grand-Orgue, with the Trompette extended to 16 pitch to play in the Pédale. Our goal for these new stops was to sound as if they might have been part of the original instrument, and in this respect, the composition of the new mixture might seem conservative by modern standards. The scaling and breaks for the Fourniture were developed after studying mixture stops in other Casavants from the same era as well as the Grand-Orgue’s 2Doublette. Breaks occur at every C after the third rank enters at c13, while the scaling of the individual ranks follows a halving ratio progression that slows considerably as the pitch ascends over ¼.

The new 8 Trompette was modeled after Casavant examples from the 1920s (including the 8 Trompette in the Récit) and has tapered shallots with long, narrow triangular openings and leathered faces in the bass octaves. The spotted metal resonators were built to a generous scale (8C = 5′′Ø) and are harmonic starting at f42. Our harmonic-length resonators for new stops usually follow the same scale as their non-harmonic counterpart of the same length. Put another way, the first harmonic resonator is the same length and diameter as the natural length pipe one octave lower. Casavant’s harmonic-length resonators in the mid-1920s, however, employed narrower resonators; there is still a jump in diameter transitioning from natural to harmonic length but the increase is roughly eight pipes larger rather than a full octave (or twelve pipes).

Space within the instrument was limited from the outset, and adding two new stops was a feat in packaging. The first seven pipes of the Pédale 16 Flûte ouverte were originally laid horizontally from the floor to the sloping ceiling at the back of the chamber but from there, the stop continued as a wall of vertical wooden pipes beside the Grand-Orgue and finished up with the smallest pipes arranged vertically behind the Grand-Orgue’s passage board. To make way for the new 16-8 Trompette rank, the vertical pipes alongside the Grand-Orgue were relocated to lie horizontally within the chamber as well as at the base of the triforium arch at the very front of the instrument. Having now opened up a corridor beside the Grand-Orgue, the 16-8 Trompette rank was installed here on two wind chests with most of the 16 octave mitred to fit under the chamber’s sloping roofline. The new II–III Fourniture stop is likewise located at the front of the instrument under the triforium arch, where it sits above one of the 16 Flûte’s horizontal pipes.

The console’s original pedalboard had a compass of 30 notes and, further, did not radiate as much as an American Guild of Organists standard pedalboard.  The console was too narrow to accept a new 32-note pedalboard so we rebuilt the console’s chassis to be 8 inches wider, providing space for additional drawknobs in the process. The original expression pedal assembly was considerably offset with the Récit pedal lining up with note a#23 on the pedalboard. We rebuilt the expression pedal assembly to fit into its current central location, conforming to AGO standards, while its frame and pedals were also recovered with new chrome. The console was fitted with new thumb pistons and dome-shaped toe pistons as well as contrasting ebony and Pau Ferro oblique draw knobs to resemble the originals. Opus 1024’s two original pedal ranks were provided with two additional pipes each to correspond with the new pedalboard’s 32-note compass. The enlarged console returned to the cathedral on a new two-piece platform, enabling its movement throughout the sanctuary.

The console features 46 draw knobs for the sanctuary organ’s stops, couplers, and other ancillary controls. Once the gallery organ has been rebuilt, the sanctuary console will be ready to play the gallery organ blindly through a common piston system with 300 levels of memory. The row of 34 tilting tablets above the Récit manual will permit the gallery organ’s four manual divisions to be coupled as desired to the sanctuary console’s two manuals and pedal. Registrations for the gallery organ will be programmed in advance on general pistons at the gallery console but once done, the gallery stops can be brought into play at the sanctuary console by activating the “Appel Tribune” tablet and using the same general pistons. Aside from multiple memory levels, the rebuilt sanctuary console offers a general piston sequencer, four programmable Crescendo sequences of 30 stages each, and record-playback capability.

After reinstalling the organ’s restored components and testing the instrument’s mechanisms, the instrument’s voicing was thoroughly reviewed and adjusted as needed. Tonal changes to the 1924 materials were kept to a minimum aside from the changes mentioned earlier, but all of the organ’s original stops were carefully adjusted for improved consistency and blend. The voicing for the new II–III Fourniture and 16-8 Trompette was meticulous to ensure these new stops built smoothly on the instrument’s fortissimo without sacrificing color or excitement.

The restoration and enlargement of Opus 1024 was carried out on an expedited timeline, and the first sounds after the organ’s return to the cathedral were heard in February 2015. The renewed instrument was first heard by the public a few weeks later on Easter Sunday (April 5) when the organ was rededicated and blessed by the Archbishop of Québec, His Emmence Gérald Cyprien Lacroix. M. d’Anjou, the cathedral’s titular organist, then played a short recital that demonstrated the organ’s graceful versatility, its vivid palette of colors, and, when needed, its grand presence. Since then, the instrument has been heard regularly within the cathedral’s liturgy as well as a concert instrument in accompanimental and solo roles. Orgues Létourneau is honored to have been selected for this prestigious restoration project, and we expect our work to renew this elegant instrument will serve the cathedral for decades to come. It was our distinct pleasure during the project to work closely with Marc d’Anjou, Gilles Gignac, and Monsignor Dénis Bélanger at the cathedral, and we would like to take this opportunity to thank them for their support and assistance at every turn.

 

Casavant Freres, Opus 1024 (1924), restored, enlarged, and revoiced by Orgues LОtourneau (2014)

Grand-Orgue

16 Bourdon 68 pipes

8 Montre 68 pipes

8 Flûte harmonique 68 pipes

8 Salicional 68 pipes

8 Bourdon 68 pipes

4 Prestant 68 pipes

223 Quinte 68 pipes

2 Doublette 61 pipes

II–III Fourniture (new) 183 pipes

8 Trompette (new) 68 pipes

Recit expressif

16 Quintaton 68 pipes

8 Principal 68 pipes

8 Viole de gambe 68 pipes

8 Voix céleste (TC) 56 pipes

8 Mélodie 68 pipes

4 Violon 68 pipes

4 Flûte douce 68 pipes

223 Nazard 61 pipes

2 Octavin 61 pipes

135 Tierce 61 pipes

8 Trompette 68 pipes

8 Hautbois 68 pipes

8 Voix humaine 68 pipes

Trémolo

Pedale

32 Flûte (resultant)

16 Flûte ouverte 32 pipes

16 Bourdon 32 pipes

8 Flûte (ext 16 Flûte) 12 pipes 

8 Bourdon (ext 16 Bourdon) 12 pipes

4 Flûte (new, ext 8 Flûte) 12 pipes

16 Bombarde (ext, Gr-O 8′) 12 pipes

8 Trompette (fr Gr-O)

 

Couplers

Gr-Orgue à la Pédale

Gr-Orgue aigu à la Pédale

Récit à la Pédale

Récit aigu à la Pédale

Gr-Orgue unisson muet

Gr-Orgue grave

Gr-Orgue aigu

Récit grave au Gr-Orgue

Récit au Gr-Orgue

Récit aigu au Gr-Orgue

Récit unisson muet

Récit grave

Récit aigu

 

Accessories

10 General pistons

6 Grand-Orgue pistons

6 Récit pistons

6 Pédale pistons

100 levels of memory

Récit expression shoe

Crescendo shoe

3 Tutti adjustable pistons

Transposer

Record/Playback mechanism

 

The console is prepared to play the gallery organ once it has been rebuilt at some point in the future. The gallery organ stops will be accessible via the General pistons plus the Tutti and Crescendo settings.  There are tilting tablet couplers for each of the gallery organ’s divisions, allowing them to be coupled as desired to the chancel console’s two manuals at 16, 8′, and 4. Also included is an “Unification des expressions” (All Swells to Swell) control plus ventils for both the gallery and chancel organs.

 

In the Wind

John Bishop
Default

What a winter.

Our son Andy writes for a daily news service at the State House in Boston and gets to see his prose online and in print the next day. Writing for a monthly journal is a little different. You’re reading in May, and I can only hope that the giant gears that drive the universe continued to function properly and the weather is warm. 

I’m writing in March on the first day of spring. I’m in my office at our place in Newcastle, Maine, looking across the Damariscotta River, a dramatic and beautiful tidal river. We’re eight miles up from the Gulf of Maine and the Atlantic Ocean, and the tide chart says that we’ll have an eleven-foot high tide just before 11:00 this morning, a couple hours from now, so the ice floes are drifting north toward town with the tide. I can barely see the sea ice on the river, because my usual view is all but obscured by the piles of snow outside.

A couple weeks ago, the weatherman predicted a heavy snowfall, to be followed by rain. There were already several feet of snow on the roof, so we hired some local guys to shovel the roof, fearing that the added weight would be too much. Those piles added to the drifts already in place to leave six feet on the ground outside my windows.

We’ve spent a lot of time outside this week in eight-degree weather because we have a new puppy, and in spite of the cold, we’ve heard the calls of eastern phoebes and cardinals right on schedule. The wicked weather must be unsettling for these denizens of springtime in coastal Maine. Think of the poor ovenbirds, who get their name from the oven-shaped nests they build on the forest floor.

We’ve had about 90 inches of snow here this winter, which is plenty, but it’s a foot-and-a-half short of the all-time record of 108 inches set in Boston this year. Last weekend, friends and family there were rooting for the predicted snowfall to exceed the two inches needed to break the record—“if we’ve been through all this . . . .” I trust they’re happy with their bitter reward. 

Subways stopped running, roofs collapsed, and houses burned down because fire hydrants were buried deep beneath the snow. Local school officials are debating whether to bypass legislated minimum numbers of school days, because it’s simply not possible to make up all the days lost to cancellations through the winter. And the New York Times quoted the city’s guide to street defects, which defines a pothole as “a hole in the street with a circular or oval-like shape and a definable bottom.” An actionable pothole is one that’s at least a foot in diameter and three inches deep. I wonder what they call a hole that doesn’t have a definable bottom.

 

But baby, it’s cold outside.

It’s been a terrible season for pipe organs. Long stretches of unusually cold weather have caused furnaces to run overtime, wringing the last traces of moisture out of the air inside church buildings. Concerts have been postponed, and blizzards have sent furious drafts of cold air through old stained-glass windows, causing carefully regulated and maintained pitches to go haywire. One Saturday night, a colleague posted on Facebook that the pastor of his church called saying there would be “no church” tomorrow. The sewers had frozen and the town closed public buildings.

One organ we care for outside of Boston developed a sharp screech lasting a few seconds when the organ was turned on or off. After spending a half hour tracking it down, it was easy to correct by tightening a couple screws and eliminating a wind leak, but it had been a startling disruption on a Sunday morning. 

A church in New York City that is vacant because it merged with a neighboring congregation suffered terrible damage when an electric motor overheated, tripping a circuit breaker for the entire (poorly designed) hot-water heating system. Pipes froze and ruptured, the nave floor flooded ankle deep, and the building filled with opaque steam. A week later, when heat was restored, steam vented, and water drained and mopped up, the white-oak floorboards started expanding, buckling into eight-inch-high mounds, throwing pews on their backs, and threatening to topple the marble baptismal font.

My phone line and e-mail inbox have been crackling with calls about ciphers and dead notes, swell boxes sticking and squeaking, and sticking keys—all things that routinely happen to pipe organs during periods of unusual dryness. And I can predict the reverse later in the season—maybe just when you’re finally reading this—as weather moderates, humidity increases, heating systems are turned off, and organs swell up to their normal selves.

 

The floor squeaks, the door creaks . . . 

So sings the hapless Jud Fry in a dark moment in the classic Broadway musical, Oklahoma!. He’s lamenting his lot, pining after the girl, and asserting to himself that the smart-aleck cowhand who has her attention is not any better than he. The lyrics pop into my head as I notice the winter’s effects on the woodwork that surrounds me. We have a rock maple cutting board inserted in the tile countertop next to the kitchen sink. The grout lines around it are all broken because the wood has shrunk. The hardwood boards of the landings in our stairwells are laid so they’re free to expand and contract. Right now, there are 5/16′′ gaps between them—by the time you read this, the gaps will be closed tight. I need to time it right to vacuum the dust out of the cracks before they close. And the seasonal gaps between the ash floorboards of the living and dining rooms are wider than ever.

The teenager trying to sneak up the front stairs after curfew is stymied in winter, because the stair treads and risers have shrunk due to dryness, and the stairs squeak as the feet of the culprit cause the separate boards to move against each other.

The other day, working in my home office in New York, I heard a startling snap from my piano, as if someone had struck it with a hammer. I ran up the keyboard and found the note that had lost string tension. Plate tectonics. Good thing the tuner is coming next week. 

As I move around in quiet church buildings, I hear the constant cracking and popping of woodwork changing size. Ceiling beams, floorboards, and pews are all susceptible. But it’s inside the organ where things are most critical. The primary rail of a Pitman chest shrinks a little, opening a gap in the gasketed joint, and three adjacent notes go dead in the bass octave of the C-sharp side because the exhaust channels can no longer hold pressure. And there’s a chronic weather thing in Aeolian-Skinner organs: The ground connections to the chest magnets are only about a quarter-inch long, and near the screws that hold the magnet rails to the chest frames, where the wood moves with weather changes, the ground wires yank themselves free of their solder and cause dead notes.

 

Let’s talk about pitch.

Fact: Temperature affects the pitch of organ pipes. You might think this is because the metal of the pipes expands and contracts as temperature changes, and while that is technically true, the amount of motion is so slight as to have minimal effect. The real cause is changes in the density of the air surrounding and contained by the organ’s pipes. Warmer air is less dense. If a pipe is tuned at 70°, it will only be in tune at that temperature. If that pipe is played at 60°, the pitch will be lower; if it’s played at 80°, the pitch will be higher.

While it’s true that all the pipes involved in a temperature change will change pitch together (except the reeds), it’s almost never true that a temperature change will affect an entire organ in the same way. In a classic organ of Werkprinzip design, with divisions stacked one above another, a cold winter day might mean that the pipes at the top of the organ are super-heated (because warm air rises), while the pipes near floor level are cold. 

There are all kinds of problems inherent in the classic layout of a chancel organ with chambers on each side. If the walls of one chamber are outside walls of the building, while the walls of the other back up against classrooms and offices, a storm with cold winds will split the tuning of the organ. I know several organs like this where access is by trap doors in the chamber floor. Leaving the trap doors open allows cold air to “dump” into the stairwells, drawing warmer air in through the façade from the chancel. This helps balance temperature between two organ chambers.

One organ I care for has Swell and Great in the rear gallery on either side of a large leaky window. The pipes of the Swell are comfortably nestled inside a heavy expression enclosure, while the Great is out in the open, bared to the tempest. A windy storm was all it took to wreck the tuning of the organ as cold air tore through the window to freeze the Great. It only stayed that way for a few days, until the storm was over, the heating system got caught up, and the temperatures around the building returned to usual. Trouble was, the organ scholar played his graduate recital on one of those days, and there was precious little to do about it.

One of the most difficult times I’ve had as an organ tuner was more than twenty years ago, caring for a huge complicated organ in a big city. The church’s choir and organists were doing a series of recording sessions in July, preparing what turned out to be a blockbuster bestselling CD of Christmas music, on a schedule for release in time for the holiday shopping season. It was hot as the furnaces of hell outside, hotter still in the lofty reaches of the organ chambers, and the organ’s flue pipes went so high in pitch that the reeds could not be tuned to match. It was tempting to try, and goodness knows the organists were pressing for it, but I knew I was liable to cause permanent damage to the pipes if I did. It was a surreal experience, lying on a pew in the wee hours of the morning, wearing shorts and a tee-shirt, sweating to the strains of those famous arrangements by David Willcocks and John Rutter rendered on summertime tuning.

 

Mise en place

I started doing service calls maintaining pipe organs in 1975, when I was apprenticing with Jan Leek in Oberlin, Ohio. Jan was the organ and harpsichord technician for the Oberlin College Conservatory of Music, and had an active maintenance business on the side. I worked with him three days a week when I was a student, and loved driving around the countryside and rolling from church to church. (Many of my peers were trapped on that rural campus by a college that didn’t allow students to own cars.) I suppose in those days we did fifty or sixty service calls each year, and as my career expanded, there were some periods during which I was caring for well over a hundred organs, visiting each at least twice a year. I suppose the annual average has been around sixty a year, or 2,400 since those naïve days in Ohio. 

Each organ has peculiarities, and each has its own environment of climate and acoustics. The tuner-technician has to learn about each organ and how it relates to the building, as well as learning the ropes of the building itself. Over the years you learn where to find a stepladder, how to get the keys to the blower room, and most important, where to find the best lunch in town.1

And speaking of peculiarities, organists crown ’em all. A professional chef has his mise en place—his personal layout of ingredients, seasonings, and implements that he needs to suit his particular style of work and the dishes he’s preparing. It includes his set of knives (don’t even think of asking to borrow them!), quick-read meat thermometer, whisk, along with an array of seasonings, freshly chopped or minced garlic, parsley, basil, ground black and white peppercorns, sea salt, and several different cooking oils. 

Likewise, the organist, both professional and amateur, sets up his own mise en place—cluttering the organ console with hairbrushes, nail clippers, sticky-notes, paper clips, cough drops, bottled water, even boxes of cookies. Sometimes the scenes are surprisingly messy, and these are not limited to those consoles that only the organist can see. Next time you’re at the church, take a look at your mise en place. Does it look like the workplace of a professional? If you were a chef, would anyone seeing your workspace want to eat your food? 

Care for the space around the organ console. Ask your organ technician to use some furniture polish, and to vacuum under the pedalboard.2 Keep your piles of music neat and orderly, or better yet, store them somewhere else. Remember that what you might consider to be your desk or workbench—the equivalent of the chef’s eight-burner Vulcan—is part of everyone’s worship space.

 

Everywhere you go, there you are.

There’s another aspect of visiting many different churches that troubles me more and more. As a profession, we worry about the decline of the church, and the parallel reduction in the number or percentage of active churches that include the pipe organ and what we might generally call “traditional” music. But as I travel from one organ loft to another, peruse Sunday bulletins and parish hall bulletin boards, I’m struck by how much sameness there is. What if suddenly you were forbidden to play these pieces:

Jesu, Joy of Man’s Desiring (you know the composer)

Toccata and Fugue in D Minor (ibid.) 

Nun danket alle Gott . . . (which of the two?)

Sheep may safely graze

Canon in D

Hornpipe

Etc., etc.

 

Each of these is a beautiful piece. There are good reasons why we all play all of them, and congregations love them. The same applies to choral music. We could get the sense that if we took away “ten greatest hits,” no organist could play for another wedding. Take away a different “ten greatest hits,” and no organist could play another ordinary Sunday worship service.

I know very well that when you’re planning wedding music, it’s difficult to get the bride (or especially, the bride’s mother) to consider interesting alternatives. And I know very well that when you play that famous Toccata, the faithful line up after the service to share the excitement. It would be a mistake to delete those pieces from your repertoire.

But if we seem content to play the same stuff over and over, why should we expect our thousands of churches to spend millions of dollars acquiring and maintaining the tools of our trade? Many people think that the organ is yesterday’s news, and I think it’s important for us to advocate that it’s the good news of today and tomorrow.

The grill cooks in any corner diner can sustain a business using the same menu year after year, but if the menu in the “chef restaurant” with white tablecloths and stemware never comes up with anything new, their days are numbered.

This summer, when many church activities go on vacation, learn a few new pieces to play on the organ. Find a couple new anthems to share with the choir in the fall. You might read the reviews of new music found each month in the journals, or make a point of attending reading sessions for new music hosted by a chapter of the American Guild of Organists. Here’s a real challenge for you—work out a program of preludes and postludes for the coming year without repeating any pieces. Can you rustle up a hundred different titles? You never know—you might find a new classic. Remember—every chestnut you play was once new music! ν

 

Notes

1. In the days when I was doing hundreds of tunings a year, I made a point to schedule tunings so as to ensure a proper variety of lunches. As much as you may like it, one doesn’t want sushi four days in a row! It was tempting to schedule extra tunings for some of the churches—there was this Mexican place next to First Lutheran . . . Wendy would say I have a lot to show for it. 

2. It’s traditional for the organ technician to keep all the pencils found under the pedalboard.

Current Issue