Skip to main content

Chamber Organ Restoration

Bradley Rule

Bradley Rule received a Bachelor of Arts in Organ Performance from the University of Tennessee, from which he graduated with high honors in 1982. From 1982 to 1988 he worked for the Andover Organ Company in Lawrence, Massachusetts, and at this firm he encountered hundreds of different kinds of mechanical-action organs.
After working nearly six years at Andover Organ Co., Mr. Rule returned to his home of East Tennessee and began business for himself. He set up shop in the old St. Luke Presbyterian Church building in New Market, Tennessee, a venerable old brick building which has served admirably as an organ building shop. Mr. Rule has built and restored organs from Alabama to Massachusetts in the years since 1988.
In addition to his lifelong pursuit of organbuilding, Bradley Rule has held various positions as organist or organist/director from 1976 until 1991, at which point his organbuilding business began to demand his undivided attention. During these years, his organist activities included playing concerts and making recordings, in addition to the usual weekly church duties.

Default

While completing the installation of a new organ in the
Tennessee Valley Unitarian Universalist Church in late 1998, I was drawn into a
conversation between Will Dunklin, the organist, and Marian Moffett, a viol da
gamba player who is a member of a local early music ensemble. Marian indicated
an interest in acquiring a small chamber organ for her home, which would be
appropriate as a continuo instrument for early (particularly English) music.
After briefly discussing prices, both Will and myself commented that an early
American organ (pre-1860) would possess many of the tonal characteristics
required for such a use, as well as providing its own historical interest.
Besides, restoration of such an instrument would likely be quite economical
compared to the price of a new organ.

After checking with the Organ Clearing House, we found
nothing small enough for such a use, and the matter got shelved in the back of
my mind. About a year later, I received a message from Marian that Will had
found a small American chamber organ on eBay, for sale by a doctor in Michigan.
After some negotiation, she purchased the organ and went with Will in a rented
van, returning two days later with said instrument. In such a serendipitous
series of events, then, did this enigmatic and charming little instrument fall
into my hands for the purpose of restoration.

Provenance

Establishing the provenance of the instrument was the first
item of interest; since the organ sat in the shop for a year before work could
commence, it gave me some time to pursue the subject. Alas, despite our efforts,
the little instrument still remains anonymous. The following, however, are some
of the identifying characteristics pertinent to its provenance.

The cabinet holds a number of clues, which help us make some
general conclusions. The cabinet (as well as the chest and internal framework)
is made of eastern white pine, with a smattering of cherry and black walnut.
This clearly identifies it as an American-made instrument. The Empire case,
with its ubiquitous crotch mahogany veneer and late Empire styling, seems to
place it between about 1845-1855. According to Barbara Owen, the cabinet looks
like the work of early Connecticut builders. This dovetails nicely with the
oral history we received from the previous owner, who had been told that the
organ was built for the Lockwood family of Norwalk, Connecticut. Apart from
these general observations, the cabinet holds another clue: the ripple
moldings, which appear in several shapes and sizes. According to an article by
Carlyle Lynch in the magazine Fine Woodworking (May/June 1986, pp. 62-64), such
molding was made by only one company in America, the Jonathan Clark Brown clock
company in Bristol, Connecticut. This company made the gew gaw covered clocks
known as steeple clocks, but after the factory burned in 1853, J. C. Brown
clocks no longer were made with the unique ripple moldings. Such moldings
require an elaborate, slow-moving machine for their manufacture, and the
machine was evidently never rebuilt. If the builder purchased his ripple
moldings from the clock company, then it is clear the instrument was built
before 1853.

The hardware found on and in the instrument provides more
tantalizing hints as to the organ's provenance. The mix of early factory-made
components with other hardware which is clearly hand-made seems to place the
organ on the very cusp of the Industrial Revolution. For instance, the lock for
the keydesk lid bears unmistakable marks of being handmade: all parts were hand
filed out of solid brass, and then fitted together with hand-threaded screws. Yet,
the hinges which occur in various places (e.g., swell pedal, main reservoir)
are all of cast iron and bear the name "Clark's Patent." While a bit
crude (they certainly are not interchangeable), they bear all the signs of
early factory production. An additional item of interest is that one leaf of
each hinge was cast around the pin while the pin was inserted into the other
leaf. This makes it impossible for the pin to ever work its way out; it also
makes it impossible to separate one leaf from the other, short of a sledge
hammer.

The most interesting piece of hardware is the square iron
roller for the swell mechanism. Clearly stamped on the bar is the word CLYDACH.
It turns out that Clydach was a Welsh ironworks established in 1793, continuing
in production until about 1858. I'm not sure what this reveals about early
American sources of iron and steel. Of course, it is possible that the builder
recycled the piece of iron from an older apparatus or structure.

Finally, even the humble wood screws give us some
information. They are a mix of the earlier blunt ended screws and the more
modern pointed screws, and all but one or two were clearly made by a machine.
This also seems to point to about 1850-1855, although I am unsure when the more
modern pointed wood screws became available. The E. & G.G. Hook organ of
1847 in Sandwich, Massachusetts, was put together entirely with blunt ended
machine-made screws, so it seems that modern wood screws came along a few years
later.

One intriguing note is written (sometimes scrawled) on
almost every piece of the instrument. The message "No. 2" can be
found on the bellows, keyboard, backboard, knee panel, etc. The inescapable
conclusion is that there must be (or must once have been) a "No. 1"
lurking out there somewhere, waiting to be discovered.

The reader is left to draw his own conclusions about the
provenance of the instrument. Clearly, the Empire style and the handmade
hardware place the instrument no later than about 1855. The wood screws fit
into the time frame of about 1850. The oral history as well as the general
design of the case place the builder in Connecticut. We were unable to find
information about "Clark's Patent" hinges, and CLYDACH presents more
an enigma than it does an answer. Perhaps a reader will recognize one of these
items and shed a bit more light on the history of this little instrument.

Restoration techniques

The following describes the techniques and materials used
for the restoration. An astute reader will occasionally see the tension which occurs
when the desire to restore the organ to its original state is not always in the
best interest of the customer. Ultimately, we did almost nothing to the
instrument which could not be easily reversed later. Additionally, we took
great care to avoid removing any original material (no pipe tops were trimmed,
and even the finish was not entirely removed).

Cabinet

Failing joints were disassembled when practical and re-glued
with hot hide glue. Other joints were simply injected with hot hide glue and
clamped for 24 hours minimum.

The reservoir and feeder assembly share a common 1"
thick horizontal board which is dadoed into the sides of the carcass. This
board was originally glued into the dados and glued and nailed to the front
rail directly above the two pedals (the self-closing swell pedal on the left,
and the single pumping pedal on the right). Mahogany crotch veneer was then
applied over the nails. Someone had previously done a very nice job of sawing
through the nails and sliding the entire assembly out the back of the
instrument in order to patch the bellows. We decided to leave this alteration,
since it is truly the only way to access the bellows for releathering. Maple
cleats were added so that the 1" board could be screwed securely to the sides
of the carcass.

Stabilizing and repairing the veneer became one of the most
time-consuming jobs. Like many Empire pieces, the crotch burl mahogany seemed
to shed little bits of veneer onto the floor every time one walked past. About
half of the veneer was no longer securely glued to the white pine below, and
the ogee-shaped front board of the folding lid was missing about 70% of its
veneer. The ogee crown molding veneer was almost entirely unglued from its
substrate, although miraculously most of the veneer was still there. The
decision was made to remove the remaining tatters of veneer from the ogee
shaped lid front and use the bits to patch veneer on the rest of the piece. The
lid front was then entirely re-veneered with book-matched mahogany crotch burl.

The crown molding presented another challenge; the veneer
was so brittle that even the slightest attempt to lift it in order to work glue
under it caused it to shatter. Clamping was difficult; since the veneer was
glued over a hand-planed ogee, the shape of the contour changed from one end to
the other, and the molding on the sides of the crown were quite different in
shape from each other and from the front. This precluded any possibility of
making precise blocks to fit the shape of the molding. The solution was finally
to inject fish glue through tiny holes in the veneer and clamp a sand-filled
Ziplock bag firmly over the area. The sand conformed perfectly to the contour
of the molding and distributed the clamping pressure evenly. The fish glue,
being a protein-based glue, was compatible with the old hot glue and adhered
well, though it required long clamping times of about 48 hours. Close
inspection reveals the pinpoint size holes through which the glue was injected,
but it seemed the least destructive way to stabilize and re-glue the very
brittle veneer.

Conservation of the finish required a careful approach.
Rather than subject the piece to the humiliation of being entirely stripped and
refinished, we decided instead to conserve what was left of the old shellac
finish. Parts of the case, such as the underside of the lid, retained the
original finish in excellent condition. Other parts had obviously been covered
with an additional layer of low quality shellac. Besides this, someone had
studiously "patched" every missing veneer chip by the application of
red-primer colored latex paint. Paint ended up on the surrounding intact veneer
as much as it did on the offending gap in the veneer. To address these multiple
problems, the course of action was as follows:

The top layer of accreted dirt and crazed finish was sanded
off using 400-grit sandpaper with paint thinner as a lubricant. This required
removing only a very thin film of finish. Then, a pad of wool and cheesecloth
was filled with shellac and applied over the remaining old shellac. This
smoothed out any remaining "alligatored" shellac. This French Polish
technique was repeated about a dozen times until the surface took on an evenly
covered appearance and began to glow. Then, at the request of the customer, the
shellac was sanded lightly and was covered with two coats of high quality
varnish for durability. On parts of the cabinet where extensive veneer patching
was required (such as the crown molding), the resulting surface was too rough
and the old finish too compromised for conservation; it was necessary to sand
the entire surface down to the bare wood. Then, colored pumice was rubbed into
the grain along with residual sanding dust and garnet shellac, after which the
usual french polish technique was used, followed by the two coats of varnish.
The orange colored garnet-lac returned the "old" color to the newly
sanded wood, making a perfect match. The results were visually stunning; the
mahogany crotch burl fairly leaps off the surface of the piece with three-dimensional
fervor. The keydesk itself is veneered with rosewood, and since the lid
evidently was always closed, the finish on the rosewood required little
attention.

The center panel of cloth was originally a very thin silk,
bright turquoise in color. We found well-preserved pieces of it under the wood
half-dummy façade pipes. Marian decided the original color was
remarkably wrong for her house (I had to agree), and chose a silk of subdued
gold instead. The turquoise silk is still under the dummies for future
reference. Behind the cloth panel is a very small swell front, with shades
which open only about 45 degrees. After listening to the instrument, we decided
that omitting the shades made the organ considerably louder, and virtually
perfect in balance to a small consort of viols. Fortunately, there is a large
well behind the crown molding which provided a perfect storage space for the
shades. Reinstalling them would be the work of a few minutes should a future
owner wish to use the organ in its completely original state.

Wind system

The bellows still had its original leather, but every square
inch of it had been secondarily covered years ago with hot glue and rubber
cloth, probably by the same party mentioned earlier who went to such lengths to
remove the bellows plate from the organ. The rubber cloth and hot glue had
ossified into a stiff, inflexible board-like structure which had caused all
bellows hinging to rip itself apart upon inflation of the reservoir; the single
large feeder suffered the same fate. The bellows and feeder were completely
releathered with hot hide glue and goatskin. The bellows and feeder boards were
rather generously filled with splits, cracks and checks; the worst were
reinforced with butterfly-type patches, and all were entirely covered with
rubber cloth to prevent leakage.

The short wooden wind line which conducts wind from the top
of the bellows plate into the chest was originally simply fitted into place by
friction, but the horizontal members of the cabinet frame did not shrink and
expand in the same direction as the vertical boards of which the wind line was
made; in summer, as the cabinet expanded and lifted the entire upper assembly
away from the bellows, the leakage must have been spectacular. The joints
around the wind line had probably received more attention over the years than
any other part of the organ. Numerous layers of patching (leather, glue, rubber
cloth) attested to the trouble which this particular design flaw had visited
upon those who chose to play the instrument in humid weather. It seemed that a
change was necessary, so four small oak cleats were attached to the narrow ends
of the wind line so that it could be screwed securely to both the bellows top
and the bottom board of the pallet box. The cleats are clearly and
intentionally not a part of the original construction.

Chest

The chest was plagued by innumerable runs, and after some
investigation, they all were found to be caused by a joint in the table. The
front five inches or so of the grid is covered with a thin (1/4") mahogany
table. The rest of the chest is covered by one large pine channel block,
13/4" thick and honeycombed with many channels. The joint between the thin
mahogany and the thick pine channel block is naturally a source of some tension;
even though no crack had opened up between the two, the mahogany had almost
imperceptibly lifted along the joint. The problem was solved by screwing down
the mahogany piece with a screw in every rib, and by gluing a piece of thin
leather in each channel to bridge the joint. Should the joint ever move again,
the flexible leather should absorb the movement and prevent leakage. All key
channels, as well as all offset channels, were poured out with sanding sealer.
Shellac could have been used, but since the work was being performed in the
humid summer weather of East Tennessee, I decided to avoid shellac because of
the tendency of its solvent (alcohol) to absorb water from the air.

The bottom of the grid was originally covered in a thick
cotton covered with much shellac. We chose to replace it with rubber cloth.
Pallets were re-covered with two layers of leather, just as they were
originally, and they were installed in the original fashion, glued with hot
glue at the tail and held down by a small pine slat nailed on by tiny cut
nails. The builder evidently thought it was necessary to provide pallet sizes
commensurate to the wind demand, so the already tiny bass pallets (43/4"
long) were made even shorter at middle C (4" long).

Key and stop action

The keys are mounted on a balance pin rail at a ratio of
roughly 2:5. Thus, the pallets open a small, but nonetheless sufficient,
amount. Under the keyboard is mounted an elegant mahogany backfall (ratio 1:1)
which pushes down on very slender (.047") brass wire stickers. The
stickers pass through the 1/4" mahogany table, which also serves as their
register, and push the pallets open. All the stickers are original and the
action is pleasing to play and surprisingly responsive; in spite of the tiny
pallets, a definite pluck can still be felt in the keys. Key bushings are wood
on round brass pins, and the keys are covered in their original ivory. The
pallet springs are brass, clearly factory-made, and were still all perfectly
regulated when I checked them. No spring varied from all the others more than
1/4 ounce. I left them unchanged. The builder solved one problem with the
keyboard in a rather clever way. Since the keyboard is so short, it is not
possible to place the usual 19th-century style lead-weighted floating thumper
rail behind the nameboard. The builder instead installed the nameboard itself
in loose dados in the stop jambs so that its felted bottom edge simply sits on
the keys, keeping them in tension and making it possible to adjust them
perfectly level. When seasonal changes occur, the nameboard itself simply rides
up and down in the dados. (Of course, since this particular nameboard has no
actual name, it must be a nameboard in name only).

The stop action would seem to need no mention, except for
the stop to the left of the keyboards. The single knob to the right pulls on
the tiny slider for the Principal 4', which leaves the knob on the left with no
job to do at all. However, the builder thoughtfully provided a slotted block so
that the knob, which does absolutely nothing, can be pulled out just like its
brother on the right. The disappointing aspect is that the Principal had its
original engraved ivory disc, but the ivory disc on the left was missing. I
glued in a blank ivory disc for appearance's sake, but I will always wonder
what the label on the dummy knob said. Perhaps it might have even been engraved
with the builder's name.

Pipework

The pipework is unusual from the start in that both ranks
are metal: a Dulciana 8' and Principal 4'. The Dulciana has the usual wooden
bass of the period: large scaled, low cut-up and quinty. No identifying marks
were found on any of the pipes, not even on the seven zinc pipes of the
Dulciana (F18-B24). Early zinc often had an embossed stamp identifying the
(often French) manufacturer. The rest of the pipework is common metal. The
wooden basses were labeled in distinctive block lettering, with pencil, very
unlike the elegant old cursive one usually sees on 19th-century pipes. (I have
seen identical lettering on one other set of New England stopped basses which
the OCH found in an 1890s organ. The pipes were basses to a chimney flute, and
the entire stop had been completely reworked and re-scaled for its second use.
Alas, these pipes were also of unknown provenance).

I can find no rhyme or reason for the varying mouth widths
and variable scales. Surely part of the reason is that the common metal
pipework betrays the hand of a somewhat inexperienced pipemaker. While in
general neatly made, the solder seams are not as smooth and perfect as one
usually sees on 19th-century American pipework. It is particularly
disconcerting to see a pinhole of light shining through from the back of the
pipe when one is looking in through the mouth. These pinholes occur where the
back seam of the body meets the back seam of the foot at the languid, and are
present on several pipes. They did not particularly affect the pipes'
performance, so I left them. It does seem likely that scales were made
deliberately small in the tenor range of both ranks simply so that pipes could
be made to fit in the very cramped quarters. The very fat stopped wood basses
take up a huge amount of space, making it necessary to cram the metal pipes
into a very small area. Both ranks increase several scales in size from tenor
to treble: the Dulciana gets four scales larger, and the Principal increases by
three. (See pipe scale chart.)

From the chart, one can see that the cut-ups are all over
the map. The Principal seems to have a fairly even increase in cut-up toward
the treble, but the Dulciana seems to follow no discernible pattern. Mouth
widths are more predictable, generally hovering between 1/4 and 2/9.

The original pitch was fairly easy to ascertain. The pipes
seemed most comfortable speaking at 21/4"; at that pressure at 70 degrees,
the pitch was about A432. Since the whole point of this project was to make the
organ useful to an early music ensemble, the decision was made to fit tuning
sleeves carefully onto the pipes, and lower the pitch as much as possible. This
is a completely reversible procedure, with the added benefit being that it did
not require tampering with the tops of the pipes at all. The organ pitch is now
A421, not as low as the A415 the early music players had hoped for, but still
low enough that the instruments can tune to it easily.

One remarkable aspect of the tuning is that the Dulciana,
which showed no real signs of having been tampered with, was almost completely
in tune with the pipes at dead length and the few errant pipes brought into
regulation. A few chords quickly revealed that the keys of C, D, F and G were
close to pure, while the remote keys (B, F#, Db) were quite out of tune. This
sparked a lively discussion with Marian about temperament, and after some
research into early music temperaments (research done entirely by Marian) we
decided to tune the organ to Erlangen comma, which yields perfect thirds
between c and e, & d and f#. This temperament dates to the 15th century,
and is particularly suited to use with viols, avoiding the tuning conflicts which
mean-tone introduces between keyboard and viols.

Playing the organ is truly like stepping back in time;
voicing from this era demands less from each pipe than our modern ears
ordinarily expect. The gentle metal trebles in conjunction with the quinty wood
bass is a quintessentially early sound; virtually no one was still building
organs with that inimitable sound by 1860. Adding the small Principal 4' to the
Dulciana is an exercise in judicious restraint more than it is an augmentation
of the sound. All in all, it is an instrument from a different time and place,
built for sensibilities and perceptions unique to its milieu. Other than
changing the pitch, we did nothing to the instrument to make it more relevant
or modern. It so happens that leaving things as they were makes the organ
almost perfect for the customer's use. The subtle tone and slightly unsteady
wind work almost seamlessly with a small consort of viols da gamba. Placing the
instrument in a small room brings the sound into context, and music begins to
make sense on it. It is truly a chamber organ, and is at home in that
environment.     

The author wishes to thank Barbara Owen for her gracious and
invaluable assistance in seeking the origins of this instrument; Marian
Moffett, for her research on a multiplicity of subjects; and Will Dunklin, for
his generous help in bringing the organ to Tennessee as well as for insightful
advice during the project.

Pipe scale chart

Principal 4' (labeled "Pr.") TC 42 pipes

Note        Diameter
style='mso-tab-count:1'>                 
Mouth
width      Ratio
of mouth width    Cut-up
style='mso-tab-count:1'> 
Ratio of cut-up                       
style="mso-spacerun: yes">  
Toe size

C13           41m
style='mso-tab-count:1'>         
29m
        .225
        7.8m
      .190
style='mso-tab-count:1'>       
3.98m

C25           22.5m
style='mso-tab-count:1'>   
18m         .254
style='mso-tab-count:1'>       
4.5m
style='mso-tab-count:1'>     
.200
style='mso-tab-count:1'>       
2.99m

C37           15.8m
style='mso-tab-count:1'>   
12m         .241
style='mso-tab-count:1'>       
3.0m
style='mso-tab-count:1'>     
.189
style='mso-tab-count:1'>       
2.28m

C49          10m
style='mso-tab-count:1'>         
7.2m
      .229
style='mso-tab-count:1'>       
2.1m
style='mso-tab-count:1'>     
.210
style='mso-tab-count:1'>       
2.03m

F54            7.5m
style='mso-tab-count:1'>       
6m
style='mso-tab-count:1'>           
.254
        1.9m
      .253
style='mso-tab-count:1'>       
1.77m

 

Dulciana (labeled "Dul") 54 pipes

C1              110x90m
                90m
                                21.8m
  .242

C13          64x52
  52m                                 11.2m
  .215

E17          55x43
  43m                                 10m
        .232

F18           58m
        45m
style='mso-tab-count:1'>         
.246
        11.8m
  .203         6.09m

C25          42.7m
  31m         .231
style='mso-tab-count:1'>       
7.5m
style='mso-tab-count:1'>     
.175
style='mso-tab-count:1'>       
5m

C37          27.5m
  21m         .243
style='mso-tab-count:1'>       
3.9m
style='mso-tab-count:1'>     
.141
style='mso-tab-count:1'>       
3.04m

C49          17m
        13.1m
  .245         3.4m
style='mso-tab-count:1'>       
.200
style='mso-tab-count:1'>       
2.71m

F54           13.5m
  10m         .235
style='mso-tab-count:1'>       
2.5m
style='mso-tab-count:1'>     
.185
style='mso-tab-count:1'>       
2.38m

The ratio of the mouth width is in relation to the
circumference: .250 would be 1/4 mw and so on. The ratio of the cut-up is a
simple ratio of the diameter.

Related Content

Erben Organ Restoration, Huguenot Church, Charleston, SC Knowlton Organ Company

by Benjamin K. Williams
Default

Knowlton Organ Company of Davidson, NC, has completed the restoration of the 1845 Henry Erben organ at the French Huguenot Church in Charleston, SC. All work was directed toward restoring the organ to the original intent of its builder, utilizing the same materials, hand tools, and work methods used in 1845 whenever possible. This organ is the most historically intact working instrument of its period in Charleston.

Original pressure and voicing restored

Over the years, there had been many attempts to solve the
tonal problems  caused by the
20th-century addition of carpet to the Huguenot Church. Generally speaking,
Erben's organs were voiced in a gentle and refined manner and the
style="mso-spacerun: yes"> 
carpet, of course, had the effect of
making the organ "too small" for the sanctuary. The
"solution" had been to raise the pressure of the organ and "push" the pipes to play louder. Unfortunately, this altered the character of tone as well, thus many pipes had a "forced" sound, were made unstable, or could not be tuned accurately. At the urging of their organist, David Woolsey, the church decided to return the organ to its original wind pressure, restore the original double-rise bellows (which had been converted to single-rise), and restore the hand pump and feeder bellows, allowing for the restoration of the original voicing and tone of the pipes. (Also, at Mr. Woolsey's behest, the carpet was removed from the church and the original heart pine floors were completely refinished, restoring the orgininal acoustic environment of the building.) To reconstruct the second rise, the massive 9' x 5'  bellows was disassembled completely and the original ribs were used as patterns for the new ones, which were made from perfect antique poplar. Erben made this double-rise bellows with two inward folds, rather than  the more common inverted fold on the top, as evidenced by the early traces of glue and leather. The original pump handle and dual feeder bellows were intact, though in need of new leather and a few replacement wooden parts which were made from 150-year-old maple and walnut from builder's stock. The organ may now either be hand-pumped or run from the blower by opening a butterfly valve. A period-stye wind indicator was also made and installed.

Fortunately, the original voicing of the pipes is
style="mso-spacerun: yes"> 
completely intact, as there had never
been an attempt to cut the mouths, alter the nicking of the languids, or
significantly alter the settings placed by Mr. Erben. Though some metal flue
pipes in the 4' range had been replaced (due certainly to excessive tuning
damage) these replacement pipes were made and voiced quite properly.
Determining the original pitch of the pipes was integral to the process of
finding the original wind pressure, and a key indicator in this process is the
position of the tuning ears on the two sets of chimney flutes with soldered-on
tops. It is known that hand-pumped organs rarely  exceeded 3" of pressure, so we began there as our
benchmark. With the chimney flutes in the voicing room at 72 degrees F, we
gradually lowered the pressure with the ears in a "neutral"
perpendicular position. When the speech, timbre, and tuning of the flutes and
Great Principal C pipes reclaimed the refined qualities one would expect to
hear from Erben pipes of the period, it became evident that A=430hz on
2-7/8" of wind pressure was likely the original setting! The replacement
of the unsatisfactory 1969 Great Trumpet pipes required an accurate historical
reproduction of Erben's work and these pipes, made by Eastern Organ Pipes of
Hagerstown MD using the same metal composition, scaling, and shallot shapes
taken from historical samples of Erben's reeds, yielded superb results. The
firm also reconditioned the original Erben 8' Oboe pipes, and both projects
have exceeded our highest expectations.

Pedal compass expanded

Originally, 20 pedals pulled down from the Great manual, and
there was no 16' pedal stop. John Baker, a former Erben employee, added a 15-note Bourdon 16' to the rear of the case sometime between 1859 and 1876, while a
resident of Charleston. In 1969, a 27-note pedalboard was installed with an
aluminum coupler rollerboard, but the pedal compass was never actually
completed to 27 notes. However, the Erben pedal coupler rollerboard, originally
made to actuate the pull-downs, was still stored with the organ, and by
installing exact reproductions of the Erben rollers, the original rollerboard
was expanded to 27 notes, supplanting the 1969 aluminum substitute. The pedals
and Great manual were then connected to the rollerboard with new 1/4"
walnut pulls made to period style with wrapped wire ends and adjustable nuts,
and 27 new birch pedal jacks were installed to pull the horizontal trackers.
With Baker's 16' Bourdon pipes #1-15 along the back of the organ case,
"new" 100-year-old 16' Bourdon pipes for pedals #16-27 were installed
inside the upper case, mounted on a new pallet windchest constructed of
hand-planed antique pine. A complete new pedal tracker action was constructed
to incorporate the old and new pipes, and also to provide a pedal action that
would emulate the high quality of Erben's work. A horizontal 27-note
rollerboard was laid out on a new floor frame, and pine reproductions of the Baker pedal rollers with tapered walnut roller arms were installed. The new basswood pedal trackers were then linked to the original Baker square rail to play Bourdon pipes #1-15. The pedal rollers extend to the C-side case, with roller arms to pull down the pallets for Bourdon pipes #1627, elevated inside the case. The entire pedal action lies flat on the floor underneath the bellows and hand-pump feeders providing a fitting and elegant solution. Over the years,
many trackers in the manual action had been repaired or replaced with various
materials, leaving inconsistent results. The trackers for the Swell and the
Great key actions were completely replaced, using new basswood trackers with
wooden tops and wire ends with adjustable links. All of the organ's windchests
were disassembled, cleaned, and the grids recovered in fine leather. The
mahogany chest tables were found in perfect condition, minor repairs to cracks
in the sliders, toeboards, and sponsals were made, and new wire pulldowns with
weighted seals were installed to complete the restoration of the windchests.

Shellac finish restored

The shellac finish on the beautiful and ornate mahogany case
of this organ was found in varying conditions--the sides were bleached by
direct UV radiation from the windows, the upper front casework and carvings
were coal-black from benign neglect, and the lower front case had been wiped
with a variety of furniture polishes over the years. Preservation of the
original shellac finish was imperative, but a non-invasive restoration of the
uniformity and original luster of the finish was very important. All of the
casework was damp-wiped with an oil soap solution known to be shellac-friendly,
and hand-dried. Although the sun-bleached sides had lost the dark patina of the
front case, staining such a large area simply would violate the historical
integrity of the finish. However, shellac is a natural substance, refined from
the secretions of a tiny Asian insect, the Laccifer Lacca, and in its raw form,
is the same material used by organ builders and furniture craftsmen for
hundreds of years. Using the rawest, darkest, unrefined dry shellac flakes
available, processed by hand into liquid form with alcohol, new dark shellac
was painstakingly hand-applied, melting into the original shellac until the
patina matched the rest of the case. The entire finish was then hand-waxed and
buffed using an antique furniture polish composed of natural oils and beeswax.

Organ dedication

The organ is to be dedicated in Spring of 1998, and the
recitalist is yet to be announced.

GREAT (58 notes, GG-F3)

                  8'
style='mso-tab-count:1'>            
Open
Diapason (58 notes)

                  8'
style='mso-tab-count:1'>            
Stop'd
Diapason Treble (37)

                  8'
style='mso-tab-count:1'>            
Stop'd
Diapason Bass (21)

                  4'
style='mso-tab-count:1'>            
Principal

                  22/3'
style='mso-tab-count:1'>     
Twelfth (from C)
(54)

                  2'
style='mso-tab-count:1'>            
Fifteenth
(from C) (54)

                  8'
style='mso-tab-count:1'>            
Trumpet
(TC) (42)

SWELL & CHOIR BASS (58 notes)

        Swell treble stops from
Tenor F

                  8'
style='mso-tab-count:1'>            
Stop'd
Diapason (37)

                  8'
style='mso-tab-count:1'>            
Dulciana
(37)

                  4'
style='mso-tab-count:1'>            
Principal
(37)

                  4'
style='mso-tab-count:1'>            
Flute
(37)

                  8'
style='mso-tab-count:1'>            
Hautboy
(37)

       Choir bass stops

                  8'
style='mso-tab-count:1'>            
Stop'd
Diapason (21)

                  4'
style='mso-tab-count:1'>            
Principal
(21)

                  8'
style='mso-tab-count:1'>            
Bassoon
(21)

PEDAL

Twenty* notes pulling down from the Great (*there is some
evidence that there were only 19 notes originally). The Bourdon 16' was added
later.

Gaetano Callido (1727-1813) Organbuilder in Venice

by Francesco Ruffatti
Default

One of the most famous organbuilding "schools" in Italy was founded in Venice during the first part of the eighteenth century by Pietro Nacchini, a monk from Dalmatia.1 He established a factory and built over 300 organs mainly for the territories of the Republic of Venice,2 and for the Vatican State, which at the time comprised the largest portion of central Italy.  Although his designated successor was Francesco Dacci, with no doubt his most famous pupil was Gaetano Callido, born in Este, near Padova, who established his own organ factory in Venice and built well over 430 organs during his lifetime,3 some of which were for very distant countries.4

In manufacturing his instruments Callido basically followed the style of Nacchini, with only a few changes, both from the standpoint of tonal composition and type of construction. He conceived an organ as a one-manual instrument, with a limited pedal division. This is confirmed by the fact that in the original list of his works5 the relatively few two-manual instruments were designated as "double organs" and were given two consecutive opus numbers.

Callido's organs were by no means all alike, but their size was dependent upon the presence or absence of certain stops, all chosen among a limited pallet of stops from which the builder never departed.6 By giving the tonal composition of the Great division of the largest organ by Gaetano Callido, built for the Cathedral of Feltre,7 a good picture of his "selection" of organ stops is given.

The first part of the list includes all Principal-scaled ranks that form the "Ripieno". The stops can be used separately in various combinations or all together, collectively activated by a "Tiratutti" consisting of a rotating handle placed on top of the corresponding stop knobs.

Principale                (8')8 almost invariably divided, bass and treble

Ottava  (4')

Quinta Decima                        (XV - 2')

Decima Nona                           (XIX - 11/3')

Vigesima Seconda             (XXII - 1')

Vigesima Sesta                       (XXVI - 2/3')

Vigesima Nona                       (XXIX - 1/2')

Trigesima Terza                    (XXXIII - 1/3')

Trigesima Sesta                     (XXXVI - 1/4')

The last two ranks are often missing in the smaller instruments and are of full compass only in the larger organs, being normally limited to one or two octaves in the bass. The reason for limiting their compass is quite simple: since the highest pitched pipe in the ripieno of a Callido organ is C at 1/8', all ranks break back by one octave once they reach this limit. By doing so the "mixture" composition appears as in Table 1 (as an example I am considering a four-octave keyboard compass, C1 to C5).9

With this configuration, which is common to the majority of Italian historical organs (although the "breaking-back" points may vary at times), a number of pitch duplications are present from mid-keyboard up, to the point that, starting at F#4, only two different pitches are present while playing five pipes. In order not to extend the duplication of pitches towards the lower register and to avoid increasing the number of duplications at the treble, Callido normally ended the XXXIII and XXXVI ranks at the point where they would start breaking back (at F2 and C2 respectively) or further up the scale only by a few notes.

The "registri da concerto" or "consort" stops, as Callido called them, follow. First the flute scaled stops:

Flauto in Ottava (Flute in VIII - 4') often, but not always, divided, bass and treble. Normally built as a tapered flute, it is also found in the form of a metal stopped flute (with stoppers or caps made of leather-coated cork and inserted into the resonators of the pipes) or even as metal chimney flutes, with soldered-on caps.10

Flauto in Duodecima (Flute in XII - 22/3'), normally not divided in bass and treble (but it is divided for example in the Feltre organ). It was normally built as a tapered flute, although some examples of stopped pipes at the lower register and tapered at the treble do exist.

Cornetta (Flute in XVII - 13/5') - treble only, consisting of tapered flute pipes.

Voce Umana (principal-scaled, 8', treble only, tuned flat)

and finally the reeds:

Tromboncini      (trumpet-like regal at 8') bass and treble

Violoncelli (regal with wooden resonators - 8') bass and treble

Another "consort" stop, not present in the Feltre organ but rather common in Callido's instruments, is the Violetta, usually in the bass only, but also as a complete stop, especially in the later instruments. It is a 4' string stop of narrow cylindrical scale, tuned to the unison.

The Pedal division includes, in the Feltre organ, the following stops:

Contrabassi, Ottava di Contrabassi and Duodecima di Contrabassi.  These are three ranks of open wooden pipes at 16', 8' and 51/3' pitch respectively, which are activated simultaneously. In smaller organs only the first two (16' + 8') are present, or just the 16'. In the smaller instruments the 16' pipes are often found as stopped.

Tromboni ai Pedali (a trumpet-like reed, with 1/2 length resonators at 8' pitch)

Of particular interest are the reed stops, for their unusual shape and sound. The resonators of the Tromboncini are made of tin and consist of a lower four-sided portion and a "bell" on top. Their four-sided lead sockets are inserted into walnut boots. The tuning wires are made of brass, with cow horn sledges to facilitate the sliding over the tongues for tuning. The stop at low C (8' pitch) is of 1/8 length, the resonator approximately one foot long.

The Violoncello is even more unusual and complicated. Its resonators are made of cypress wood in the form of a stopped wooden pipe, the stoppers or caps being made of boxwood. The shallots are also made of hand carved boxwood, while the tuning wires, which go through the resonators and their caps on top, are equipped with cow-horn sledges. Unlike the sound of the Tromboncini, rather "biting" and penetrating, the harpsicord-like sound of the Violoncello is very sweet and gentle.

For many of his instruments Callido left a series of "operational instructions" for the organist, intended to give suggestions on how to best use the organ stops in combinations. Several of them, if strictly followed, show us how different the musical taste of the time was from the present. For example, under the title "Elevazione," or stops to be used during Consecration, for opus # 10 Callido specifies: Principale, Voce Umana, Contrabassi . . . and Tromboni! Not the type of pedal combination that we would consider appropriate for quiet meditation. And under the title "Corni da caccia," or sound to simulate the hunting horns, he suggests: Principale, Contrabassi, full ripieno (tiratutti), Tromboncini and . . . Voce Umana! An off-unison stop used along with the ripieno! (Opus # 5, 7, 9, 12, with the addition of the pedal Tromboni in opus # 10). Other combinations of stops are closer to what a contemporary organist would choose to do.

From the standpoint of construction, the instruments built by Callido are of unsurpassed quality. Each pipe is a true masterpiece, with thin, regular, absolutely perfect solder joints. The windchests and all other parts are manufactured with the highest attention for details. Callido was quite obviously trained in a very strict way and demanded the same perfection from his workers.

The contracts with his customers contain a very meticulous description of materials: pure tin for the façade pipes "without any alloy"11; "the rest of the internal pipes made of lead with a 20% alloy of tin."12 And he goes into detail to the point of stating that "the Contrabassi will be manufactured with spruce and painted inside and outside, and will be made of walnut at the mouth . . . " and also "the windchests will be made with walnut from Feltre13 . . . with metal parts made of brass."

It is certainly worth examining in closer detail some of the manufacturing characteristics of Callido's instruments. I will try to do so by describing the most significant components of the instrument in as much detail as it is possible within the reasonable length of a magazine article.

The keyboards

The most common compass of Callido's keyboards was C1-C5, for a total of 45 keys (with first "short" octave)14 or C1-D5, for a total of 47 keys. For the organs featuring the "counter" octave the compass consisted of four complete octaves, plus an extension at the bass consisting of a short octave, real from F1 as in the case of the Feltre Cathedral organ, whose Great manual has a total of 57 keys. When two keyboards were present, the Great Organ division keyboard was always placed on top and the coupling of manuals (Positiv to Great) was made possible by sliding the Great keyboard towards the back by a very short distance (drawer-type coupling, as it is often called in Italy).

The natural keys were normally covered with boxwood and the sharps were made of walnut painted black, capped with a strip of ebony, simple or with boxwood or bone inlays.

The "breaking point" between bass and treble was normally located between the notes C#3 and D3, except for the instruments featuring the "counter-octave," where it was placed between notes A2 and Bb2 .

The total width of a full octave was practically constant at 167 mm and the length of the keys was considerably smaller than in today's keyboards: 71 mm for the sharps and only 39 mm for the front portion of the naturals.

The pedalboard

It was always made with short, parallel and tilted pedals, common to the vast majority of historical pedalboards in Italy. It featured a first short octave and was always permanently connected to the corresponding keys of the manuals (of the Great, when two manuals were present). Its compass was of 17 notes, C1 to G#2, plus a pedal for the "Rollante," or drum, a device simultaneously activating a number of harmonically unrelated wooden pipes, thus reproducing the sound effect of the rolling of a drum. The compass of the pedal division in essence consisted of a full octave, since the notes of the second octave activated the corresponding pipes of the first.

The pipes

The façade pipes were made of pure or almost pure tin and all internal metal pipes were made of a tin/lead alloy with high lead content (about 80 to 85%). The metal was not poured on the table over cloth or marble, but over sand, and then planed by hand. Both the inside and the outside surfaces of the pipe resonators were made perfectly smooth. For the smaller internal pipes a laminating machine was used to roll cast metal into thinner sheets.

Since a few Callido organs, especially in the former territory of the Vatican State, have been found almost intact,15 it has been possible to identify not only the voicing parameters used by the builder but also, in some instances, the original tuning temperaments and wind pressures.

The flue metal stops were invariably voiced with some kind of wind control at the toe. Toe openings were generous, but the voicing could not be defined of the "open toe" type. Consequently, the flue was rather wide and this determined the need for nicking of the languids in order to avoid an excessive transient at the attack, which was obviously considered not desirable in 1700s Venice. Languids were nicked all the way to the smallest pipe in the ripieno ranks, but the nicks, although numerous, were very lightly marked and in some cases almost invisible. This created a precise, clean attack and still a clear and beautiful sound. This voicing practice has one exception: the languids of the Viola pipes were left totally unnicked. And no tonal bridges or beards, which were unknown to the Venetian tradition of the eighteenth and early nineteenth centuries, were used. Consequently, their sound features a very prominent transient at the start, intended to simulate the "noise" produced by the bow of the orchestral Viola when hitting the strings.

The low wind pressure was also a determining factor for obtaining a rich, unforced sound. It was usually set between 48 and 55 mm at the water column, with only a few verified examples of slightly higher pressure.16

Tuning was strictly done by cutting the pipes to length and adjusting with the cone, except for the façade pipes, which were cut close to length and subsequently fine tuned by further carving the back of the resonator at the top in a curved shape. These cuts are called "lunette", or moon-shaped cuts by Italian organbuilders.

Wooden pipes were always made of spruce, painted with a composition of light hot glue and red clay powder, with lower lip and upper lip made of walnut. The lower lip "cover" was fastened with hand-made iron screws. At 16' pitch these pipes could be stopped or open, depending on the size of the instrument. All open pipes were tuned with the cut-to-length method, with an occasional end correction made by applying small pieces of lead sheet or wood on top of the resonator to "shade" the note.

The windchests

The builder exclusively used the conventional slider chests, with table, top boards and sliders made of walnut. The sliders were all built parallel and of constant thickness.17 They always worked "wood-on-wood," without any form of leather seal or any other device intended to avoid the sticking of sliders. This of course required the use of high quality materials, but also a very clever choice of manufacturing techniques. It must be said, from this standpoint, that the "table" or the portion of the chest located under the sliders, which includes the note channels, was made of a solid board of walnut, 40 to 45 mm thick, on which the note channels were carved. This procedure is quite common in historical Italian slider chest construction, and differs substantially from techniques used at the time in northern Europe. Carving out channels from a single piece requires much more work than building a frame and creating the channels by means of inserting dividers, but this technique has a number of advantages. First, and most important, the whole unit is made from the same piece of wood, and this avoids warping and cracking due to contrasting tensions from different pieces of material. Also, the risk of air bleeding between note channels caused by an imperfect gluing of the different elements (table and dividers) is totally avoided, since gluing is not necessary, the elements being built from the same piece of wood. But since no tree would be wide enough to form a windchest table all in one piece, several portions were joined together for the purpose, with alternating direction of the grain in order to compensate for the tendency of warping all in one direction.18

The channels were always of generous size in order to provide adequate supply of air.19 Wooden dividers were placed inside the channels to avoid interference and wind supply instability between the larger pipes of the façade and the reed stops, which were invariably placed in front of the façade, exposed to facilitate tuning by the organist. The pallets were always made of light, straight-grain spruce from the Alps. Their seal consisted of a double layer of sheepskin leather, and the surface on which they rested was also covered by leather. This provided a very effective seal for the wind and apparently did not affect in any way the precision and sensitivity of the tracker action.

The Pedal division consists of only one windchest, located at the back of the organ case. The stop knobs for the Contrabassi pipes open or close a large valve located inside the windline, which controls the air flow to the chest. The reed, when present, is activated by a slider. In practical terms this means that the Tromboni cannot be played separately from the Contrabassi, because the Contrabassi stop knobs, and consequently the air valve, must be open to feed the whole windchest.

The mechanical action

Callido always used the suspended action, which is the simplest and most direct mechanical transmission mechanism. When a Positiv divison was present, always located at the left side of the keyboards, the corresponding keyboard worked in the same fashion, except that the keys is this case pushed down the trackers istead of pulling them.20

The rollerboards for the manual divisions, for the stop action and for the pedal, were made with forged iron rollers fastened to spruce boards by means of brass wire. The "swords" pulling the windchest sliders were also made of forged iron.

The winding system

The most common winding configuration in Callido organs includes two multiple-fold bellows (consisting of five folds) made entirely of spruce wood. They were normally placed one on top of the other and were activated by ropes through a system of pulleys. Their size was rather standardized: larger size bellows were used for the larger instruments, and smaller size for instruments requiring less wind.

Restorations are conducted in such a way that the original winding system is always preserved and carefully restored and, where not present, in many instances built new as a replica of the old.21 A modern blower is usually connected to the system, in such a way however as to keep the hand pumping system operational. This makes it possible to make a very interesting comparison between the original wind supply, slightly irregular due to the small but detectable differences in pressure caused by the manual pulling of the reservoirs, and the more stable supply furnished by the blower. "Flexible winding" as it is referred to today is a different matter: it has to do with the response of the wind and, in practical terms, the drop in wind pressure at the use of certain combinations of stops or notes. From this standpoint, although the phenomena of the so-called "flexible" wind is present in Callido organs, the design of the wind supply system, starting from the size of the bellows all the way to the generous dimensions of the windchest channels, indicates that Callido was trying to avoid instability in the wind supply.

The tuning system

As far as we know Callido never used equal temperament, already present in other parts of Europe at the time. Already well known for a few centuries, it was considered uninteresting and not desirable, especially due to the unpleasant "wide" tierce intervals which are present even in the most commonly used keys. An interesting statement on this subject is given by Giordano Riccati.22 In his book, "Le leggi del Contrappunto" written in 1754, he states: "Practically speaking, I have never been able to find an organ or an harpsichord tuned with the equal 12 semitones." In 1780 and 1790 he stated the same concepts again. But equal temperament continued to be rejected in Italy well into the 19th century. Giovan Battista de Lorenzi, a very ingenious builder from Vicenza, in 1870 created a "moderate temperament" which, although very close to equal, was intended to reduce the "out of tune" effect of the most used tierce intervals.

We know that Callido's master, Pietro Nacchini, for some of his works used a tuning method which consisted in tuning the 11 quint intervals from Eb to G# flat by 1/6 comma each, a method which was very close to the practice of Gottfried Silbermann.24 Callido may also have used this method, but he departed from it at some point and he adopted a variety of similar systems,25 among which the temperament invented by Francescantonio Vallotti, Music Director at the Basilica of St. Anthony in Padova, and Alessandro Barca in 1779, which avoided the wide G#-Eb interval, making it almost pure.26

A unique example of a non-codified temperament comes from the organ built by Callido's sons Antonio and Agostino in 1813 (the year of Gaetano's death at age 86) for the Parish Church of Tai di Cadore (Belluno). This instrument was restored by Fratelli Ruffatti in 1980-81. Prior to restoration, the pipes were found in almost perfect condition, due to the fact that the organ had been left untouched early in its history when the access stairway to the balcony was removed. After cleaning, the pipes were  almost in tune and it was relatively easy to identify and restore a type of unequal temperament which did not follow codified methods and which represented one of the many "variations" introduced by the tuners at the time for a "sensitive" tuning of the instruments.27

The tonal ideals and manufacturing techniques of the Callido factory were carried on, primarily in the Veneto and Marche regions, by a number of organbuilders: in Venice by Giacomo Bazzani, a former worker in his shop, and by his successors; in Padova and its province, among others, by Gregorio Malvestio, a priest (1760-1845), by his nephew Domenico, by Domenico's son Giuseppe and grandson Domenico. The closing down of this shop originated the beginning of the Ruffatti firm.28

In the Marche region Callido had a number of followers including Vincenzo Montecucchi from Ancona, Sebastiano Vici (Montecarotto, 1755-about 1830), Vincenzo Paci (Ascoli Piceno, 1811-1886) and others, who in some cases produced organs so close to Callido's techniques that sometimes their identification as non-Callido instruments requires an expert examination.29                   

Notes

                        1.                  His real name was Peter Nakic, born in Bulic, near Skradin, north of Sibenik, in present Croatia, a former territory of the Republic of Venice. As was customary during the time, his name was "Italianized" and became Pietro Nacchini.

                        2.                  The Republic of Venice during the eight-eenth century was a large State, including parts of Slovenja and Croatia and the present Italian regions of Veneto, Friuli Venezia Giulia and eastern portions of Lombardy.

                        3.                  See Studi e Documenti di Storia Organaria Veneta by Renato Lunelli. Ed. Olschki, Florence, 1973, and also Gli organi di Callido nelle Marche by Ferrante--Quarchioni, Ed Villa Maina, 1989.

                        4.                  Opus numbers 13, 185 and 393 were built for churches in Istambul and opus number 424 for Izmir, Turkey.

                        5.                  The original list or catalogue of organs built by Gaetano Callido survives. It consists of three panels made of canvas on which the opus number, year of construction and location of the instruments were marked in India ink by the builder. Although water damage washed away the names of 88 of his instruments, between the years 1789-91 and 1794-98, it still gives accurate information about 342 organs manufactured in his factory. The last opus number is 430, built in 1806, after which the list was discontinued. In recent years many of the "lost" instruments have been identified.

                        6.                  Only at the turn of the nineteenth century, when Callido's sons Antonio and Agostino were active in the factory, a limited number of "variations" were introduced, in the form of new reed stops (but still of the commonly used "regal" type) and flutes. Times were changing in Italy and a more "orchestral" style of sound, requiring highly characterized solo stops, was being introduced in churches, in the wave of the predominant influence of opera even in the music composed for organ.

                        7.                  This exceptional instrument, built in 1767 (opus numbers 37 and 38) and restored in 1979-80 by Fratelli Ruffatti of Padova, is practically equal in size to another organ, built for the Parish church of Candide (Belluno).

                        8.                  The Great keyboard of the Feltre organ is extended by one octave at the bass . This "counter-octave" as it is commonly called, consists of a short octave (C-D-E-F-G-A-Bb-B) of which only the notes from F up are real, the preceding ones activating the corresponding notes of the higher octave. In essence therefore the Principal starts in this case at 12'F, the Octave at 6', the Fifteenth at 3', etc.

                        9.                  This is the normal system used in Italy to designate not the pitch but the position on the keyboard. F3 for instance designates the note F of the third octave of the keyboard.

                        10.              Due to the absence of the "beards," which makes tuning adjustments possible when the caps are soldered, it is quite obvious that Callido must have had a very precise scale for cutting the resonators of these flutes to length before soldering the caps. Minimal tuning adjustments were however still possible through cone tuning of the chimneys.

                        11.              i.e.,  without the addition of lead, as reported in the specifications for the new organ to be built for the Madonna della Salute Church in Venice, dated September 19, 1776.

                        12.              Same, as above. In other contracts he chooses different alloy compositions for the internal pipes, as in the case of the contract with the Parish Church of Borgo Valsugana, November 8, 1780, where a 15% tin content is specified.

                        13.              The walnut from Feltre (Belluno) was traditionally of the highest quality, dense, dark and almost redish in colour.

                       14.              The short octave, or "broken" octave as it is often called in Italy, consists of 8 keys: C-D-E-F-G-A-Bb-B. The key arrangement is different from normal: basically, it looks like an octave starting from note E, where E plays C, F# plays D, G# plays E and all other notes are in the right place.

                        15.              This is the case of the organ in the convent Church of S. Anna in Corinaldo (Ancona), where Callido's daughter was a nun. The instrument, which is presently under restoration at the Fratelli Ruffatti shop, was found in remarkably good condition, still with the original hand-pumped bellows in good working condition. Since Callido was rightfully considered a master, his work was highly respected over the years by other organbuilders and for this reason the voicing of his instruments was often never altered in spite of the changes in musical taste.

                        16.              It is the case of the Callido organ at the Chiesa della Croce in Senigallia (Ancona), restored by Fratelli Ruffatti in 1993, where the original hinged bellows and their carved stone weights were found. Probably due to the unusually dry acoustics of the church, whose walls and ceiling are literally covered with elaborate wood ornaments and canvas paintings, the pressure was originally set at 60mm at the water column. Another example is the Callido opus 69, 1771 in the church of the Agostinian Fathers, Civitanova Marche. The instrument, restored in 1987 by Pier Paolo Donati, shows an original wind pressure of 64 mm (information courtesy of Dr. Massimo Nigi, honorary Inspector for the "Soprintendenza per i Beni Artistici e Storici" of Florence, a governmental agency in charge of supervising the preservation of Italian ancient works of art).

                        17.              This is not an obvious observation, since a great number of slider chests built in the 17th and 18th centuries in central and southern Italy were built with sliders non-parallel and of decreasing thickness. This feature was intended to avoid the sticking of the sliders. When in the "on" position, the sliders were pushed in and no space was left between the sliders and the other wooden surfaces; on the contrary, when pulled out (stop in the "off" position) the sliders, due to the decreasing thickness and width, could move freely.

                        18.              One might say that, during Callido's time, the problem of artificial heating of churches did not exist, thus making this procedure possible. It is to be noted on this subject that the very high number of strictly philological restorations on these organs by Fratelli Ruffatti and other restorers in Italy, performed without the introduction of any non-original elements for the sealing of the sliders, proves that the original system of windchest construction well withstands changes in heat and humidity level of the air.

                        19.              For a scale drawing of a Callido windchest see L'Organo Callido della Cattedrale di Feltre by Oscar Mischiati. Ed. Pàtron, Bologna, 1981.

                        20.              In this case the key pushes down a wooden tracker which in turn pushes down the rollerboard tracker placed under the keyboard. At the opposite end of the roller the pallet is pulled open by means of a brass wire.

                        21.              In some cases, where the original bellows were replaced in the nineteenth century by the more "modern" multi-fold parallel bellow with pumps, activated by means of a wooden lever or a wheel, the local governmental authorities designated to supervise the preservation of ancient instruments may choose not to have the system rebuilt as a replica of the original but to keep the already "historical" substitute.

                        22.              Born in Castelfranco Veneto (Padova) in 1709, he studied at the University of Padova and became a famous mathematician, architect, expert in hydraulics and music. He was the author of an interesting temperament, which became famous at the time, used by many organbuilders especially in the Venetian area. It was surely used in his later works by Nacchini and possibly by Callido as well.

                        23.              See Patrizio Barbieri, Acustica Accordatura e Temperamento nell'Illuminismo Veneto, Ed Torre d'Orfeo, Roma 1987.

                        24.              See Patrizio Barbieri, Acustica Accordatura e Temperamento nell'Illuminismo Veneto, Ed Torre d'Orfeo, Roma 1987.

                        25.              The result of studies conducted during restorations show that a variety of similar temperaments, which can be defined as variations of the above Riccati and Vallotti temperaments, were used in normal practice.

                        26. The Vallotti temperament in the slightly corrected version by the contribution of Barca, was intended to simplify the Riccati, and consists of a series of six consecutive quint intervals, from F-C to E-B tuned flat by 1/6 comma, and the six remaining quint intervals practically pure (flat by an imperceptible 1/66 comma). The value in cents of semitones of its quint and tierce intervals follow:

Quint intervals cents

F - C        698.4                              C - G      698.4      G - D      698.1                              D - A      698.6                              A - E       698.4                              E - B       698.4                              B - F#    701.7                              F# - C#                        701.5                              C# - G#                      701.6                              Ab - Eb                       701.7                              Eb - Bb                       701.6                              Bb - F    701.6                                                     

Tierce intervals                      cents      

C - E       393.5

F - A       393.5

G - B      393.5

Bb - D  396.5

D - F#   397.1

A - C#  400

Eb - G   400

E - G#   403.2

Ab - C  403.3

F# - A#                       406.4

Db - F   406.5

B - D#  406.5

                       

Keeping in mind that the value of the pure quint is 702 cts and the value of the quint in the equal temperament is 700 (narrow by 2 cts), by analysing the quint intervals of this temperament it is easy to see that they are basically divided in two categories, narrow (but more moderate than, for example, in the 1/4 comma mean tone, which shows a value of 696.5 cts.) and almost pure. As to the tierce intervals (pure tierce = 386 cts, tierce in equal temperament = 400 cts) although no pure intervals are present, five of them are "better" or more in tune than the corresponding ones in the equal temperament, and two more show the same value of 400 cts. It is also to be considered that no tierce reaches extreme values. The absence of really unusable keys and the relatively easy application in practical terms by the tuner have determined the success of this temperament during its time.

                        27.              The Tai temperament includes two "wolf" quint intervals, at the opposite ends of the "circle of quints," one wide (G#-Eb) and one narrow (A-E) and six very good tierce intervals. This system is of particular significance primarily because it shows how far from equal temperament this organ was tuned so late in Callido's history.

                        28.              See Renato Lunelli, Studi e Documenti di Storia Organaria Veneta, Ed. Leo Olschki, 1973, p. 200.

                        29.              Information about Callido's followers in the Marche region are the courtesy of Mauro Ferrante, honorary Inspector for the preservation of ancient organs in the Marche region, appointed by the "Soprintendenza per i Beni Artistici e Storici" of Urbino.

Residence Organ

The Isle of Man

From Peter Jones, the Offshore Organbuilder
Default

This article is coming to you from the Isle of Man, an island some 30 miles long by about 14 miles wide, and sitting midway between Ireland and England. Its longest river--the Sulby--stretches for a full 10 miles or more, and Snaefell--the highest mountain--reaches a height of over 2,000 feet. Anyone with a world atlas and a magnifying glass to hand will have no trouble in locating the "Island," as those who live here often term it, off the west coast of England, facing Liverpool.

 

 

The Isle of Man may be little known in the wider world (or even on the "adjacent island" of England--we don't say "mainland," of course!) but like most places it does have its peculiar features which mark it out for those with special interests. It is an off-shore finance center, for example, with relatively low rates of tax. It is known for its motorcycle races (the "TT Races") which take place on the public roads--one of the largest (and arguably most dangerous) circuits of its kind in the world. For those who like unspoiled countryside to look at or walk over, and a quiet and relatively unhurried way of life, the Isle of Man is the place to be. It is an island of Fairies, one of the largest water-wheels you are ever likely to see, Celtic stone crosses and much more. Most important to me, and I hope of interest to readers, its small area is home to a surprising variety of some 50 or so pipe organs, and I am more than happy to have been the resident organ builder here for over 20 years.

For those of us with a fascination for the King of Instruments, there is much to be said about life here--too much for one article such as this--and rather than describe the organs as a whole in greater or lesser detail, I thought it might be better to describe some of the incidents which make the life of "the organ man" anything but tedious.

Looking back over the work undertaken in the recent past, I see one job which will be of interest to the great majority of organ players, from the professional recitalist to the home enthusiast who plays only for his own enjoyment. I refer to an ambition which attracts so many organists, and which eludes all but a few--the luxury of a real pipe organ in one's own home.

How many have investigated this possibility, only to find that the cost (and sometimes the space) involved ensures that the pipe dream remains just that? True, there is the electronic substitute--smaller and cheaper, with a great variety of Golden Tones of one kind or another--and then again the organ in church is usually available to the serious player--albeit not so attractive in the winter, nor so convenient for that odd 30 minutes practice at the end of the day. But for those badly infected by the organ bug, the unfortunates with an acute case of "organitis," there can never be any hope of a cure until they can see for themselves those gleaming ranks of metal and wooden pipes and the console with its several keyboards, waiting in the music room for their sole use!

So it was with The Reverend Alec Smith. His love of the organ had actually led him to start an apprenticeship in organ building as a young man, but he quickly saw the light, heard the call, and became an ordained priest in the Church of England. At that time, he assembled a worthy (if somewhat ungainly) collection of pipes, old keyboards, bits of mechanism, etc., into a Frankenstein creation which crouched in the corner of one of the large rooms of the vicarage in his country parish in England. This creation was a credit to its owner, but more than a little ponderous for anything other than a large house (preferably not your own) with plenty of spare rooms. When, in the fullness of time, Alec became an army chaplain, and he and his wife Jean were inevitably posted abroad, the organ was dispersed, almost all of it never to be seen again.

On retirement from the army, Alec settled in the Isle of Man and became Organ Advisor to the Diocese. It was now that the organ-building bug, which had lain dormant for so many years, was re-awakened, and the idea of a house organ was again proposed. There were, of course, several problems. The usual ones--centered around lack of space and finances--were, quite rightly, pointed out by Jean, and in any case there was a seemingly adequate 2-manual electronic, with its equally large speaker cabinet, already taking up far too much room in their small cottage in the Manx countryside. Jean correctly pointed out that it was more room they needed, not a pipe organ!

In a attempt to save some space, and acting on the advice of the local music shop, new and much smaller speakers were fitted to the electronic by an "expert" from Douglas, the Island's capital. After a day spent fitting the new speakers into the ceiling (with the novel use of a screwdriver to create some suitable holes in the plaster), the expert switched on, at which point there was an impressive bang followed by an ominous burning smell. It seemed, on later examination, that the amplifiers (intended to power two large speaker banks in a church setting) had seen the modern speakers as a virtual short circuit in electrical terms, with the inevitable result. The expert withdrew, promising to "work something out." I believe he left the Island, and, in any case, was never seen again. The electronic was no longer adequate. It was dead.

At this point, a further discussion took place on the subject of a new pipe organ, and Jean was persuaded, but only agreed on one seemingly-impossible condition: aside from the console, the new organ must not project into the room any further than the line of the first ceiling beam (some 14≤ from the end wall). Since there was no possibility of siting anything behind the walls (three of them being external, and the fourth taken up with the fireplace) the situation appeared hopeless, and it was at this point that Alec called me in.

Impossible situations regarding space are a challenge to the organ builder. More than one has succumbed to the temptation to push too-large an organ into too-small a space, with disastrous results, and I have seen the consequences of several of these unhappy situations. In one such case, an instrument was built in which the Great and Choir (mounted one above the other and in front of the Pedal pipework) "speak" into a solid masonry wall some 3 feet thick. Tuning/maintenance of such an organ is difficult if not impossible, and a warning to any organ designer. Alec's requirement was for the cheapest possible instrument, with a fair selection of stops over two manuals and pedals, all within a depth of 14≤. It had to fit into one small room of a cottage which has only three rooms on the ground floor (the other two being the kitchen and porch) and it must not be a monster from the tuning/maintenance standpoint.

There was space for only two or three sets of pipes, but Alec stated from the outset that, "I want more than three wheels on my car," so we were obviously looking to something other than mechanical action with two or three stops. This need to make the most of the available pipework suggested an "extension organ" of some sort. This, and the restrictions of the site, dictated electric action, and financial considerations suggested the simple mechanism as shown in the sketch. The question of electric versus mechanical action is one of those subjects likely to provoke strong opinions both for and against. In my view, each system has its merits and I am happy to work with either, but when a client requests more stops than the room or budget will allow, the obvious way forward is for a stoplist extended from a small number of ranks, and this means an electric mechanism. The design shown, if correctly made, is reliable, very quick (giving good repetition) and quiet. Incorrectly handled, it is none of these things, and has thereby acquired a poor reputation in some circles. With sufficient funds, and more space, an electro-pneumatic action would have been more sophisticated, but with enough care taken in its design and construction, direct electric action (as shown) is almost as good.

Some readers may be unfamiliar with the idea of an "extension" organ. This is an instrument in which a set, or "rank," of pipes is available to be played at more than one pitch. For example, a set of flute pipes could be played at 8' pitch (via a console stop labeled, say, Stopt Diapason 8') and the same set could also be available at 4' pitch (via a console stop labeled Flute 4') or at 16'  pitch (in which case the console stop might be labeled Bourdon 16') and so on. Clearly, the idea has its uses and abuses, as in the case of the 2-manual and pedal organ in which every console stop was actually taken from a single rank of Dulciana pipes!

The final stoplist is one which I have used successfully on various occasions. It is based on three ranks representing the three main tone-colors of the organ:  Diapason, Flute and String. Each of the three ranks consists of 73 pipes, and are listed below as:

Rank A/ Open Diapason, running from C13,

Rank B/ Stopt Diapason, running from C1, and

Rank C/ Salicional, running from C13.

In addition there are 12 stopped Quint pipes (shown below as "Q") running from G8 (at 8' pitch) for the pedal 16' stop (see later).

(Reed tone was not included, as it is difficult to have conventional reeds sufficiently quiet for such a small setting. In any case, there was no space available.)

Note that the Open Diapason is of small scale, and this made it much more suitable, for our purpose, than the more usual scaling of such a stop. When selecting second-hand pipes for a home extension organ, a Principal would be the first choice  to provide the Open Diapason--Principal--Fifteenth "stops," as they appear on the console, and I have even known a Gamba to make a very acceptable open metal extension rank, once it had been re-scaled and re-voiced. Ideally, where finances are not a limiting factor, new pipes should be made for all ranks, so that their scaling can be suited to the room and stoplist.

If an "extension" scheme is to work, musically, it is important to avoid the temptation of too many stops from too few pipes. I know of one organ with the stops simply repeated on each keyboard, and though this gives maximum flexibility, it is very confusing from the player's point of view, and the instrument as a whole is strangely bland and characterless. The three sets of pipes for Alec's organ were made available at different pitches, under the guise of different stop names, to make registration more straightforward from the player's point of view. In this way, some 15 speaking stops are available to the organist, instead of three which would result from the use of mechanical action.

The specification shown has only one stop (the Stopt Diapason) actually repeated on each manual. This is because it is so frequently used, and blends with the other two ranks at 8' pitch.  None of the other manual stops are repeats, and they have been arranged so as to discourage the use of the same rank at only one octave apart. (E.g.,  the Open Diapason 8' is intended to be used with the Salicet 4', or the Flute 4', not the Principal 4', as you might expect.) Using the stops of an extension organ in this way reduces or (more usually) eliminates the well-known "missing note" problem, which occurs when one strand of the music runs across another, and both need a pipe from the same rank, albeit from different extended "stops." If, for instance, the Stopt Diapason 8' and Flute 4' are drawn on the same manual and key C25 is held down, the pipes heard, as counted from the flute rank, will be C25 and C37. Now add manual key C13, which will sound pipes C13 and C25 (which is already playing from key C25). In this example a pipe at the pitch of C25 should appear twice, but actually appears only once. The missing note will be most obvious if either of the two manual keys is held down while the other is repeated.

One of the most important criticisms to be levelled at an extension scheme is this problem of missing notes, which can lead to a lack of clarity. For all practical purposes, this drawback can be completely overcome by a combination of the organ builder (in preparing a modest stoplist) and the player (in thoughtful use of the instrument, so that the smallest number of stops is drawn at any one time, preferably from different ranks, or at least from ranks separated by more than one octave). In actual practice, this kind of stop selection becomes automatic to the organist who realizes the limitations of the instrument.

Another important factor in the success of this type of organ is the regulation of volume and tone quality of the pipes within a stop, and also the regulation of the stops in relation to each other. Each stop is regulated with a very gradual crescendo from bass to treble. This requires subtle handling, but when correctly carried out results in a clear ensemble in which the treble parts can be heard above the tenor and bass.

The ranks themselves are regulated with much less distinction in power than would usually be the case, so that equivalent pipes of the Stopt Diapason are similar in volume to those of the Open Diapason, and the Salicional, while quieter, is not far behind. This results in much less contrast in power among the 8' stops and this is a compromise, of course, though you still have variety of tone. The blend between ranks played at different pitches is much better than if they are regulated in a conventional manner, with the Open Diapason much louder than the Stopt Diapason and Salicional distinctly quieter. In an instrument such as this, contrast in power is created more by contrasting combinations of stops than between the ranks themselves. Regulating the ranks as if they were separate stops (a mistake often found in both church and house extension organs) results in the Open Diapason and Principal obliterating everything else, while the Fifteenth screams. 

I have used the specification shown several times, including my own house organ, and find it to behave very much as a 'straight' instrument would. I seldom use the couplers, though there are occasions when they become necessary. While it requires thoughtful registration to get the best from an extension organ, a scheme such as this, with a small number of stops, arranged so as to discourage the use of the same rank in two stops separated by only one octave, is very successful.

To cut down costs, Alec agreed to the use of his old electronic as a console, and also to the use of any other second-hand parts which could be obtained. He was also interested and able to lend a hand in the actual construction, when his earlier experiences in organ building were a great asset. The need to keep within 14≤ maximum depth was easily dealt with, by taking up the entire width of the room, side-to-side.

Knowing the number and range of the ranks and the space available, the first step, in a job such as this, is to measure the pipework, in order to see how best to arrange the pipes, and, indeed, if they will fit in at all!

Metal pipes need to be measured in height and in diameter, wooden ones in height only (including any stoppers). In practice, nearly all metal pipes run to a standard scaling (i.e., the rate at which the diameters reduce from note C1 through to the top pipe). Wooden pipes vary considerably, both in scaling (the internal width and depth) and in the thickness of the wood used, which in turn decides the external width and depth. There is also the question of the foot, which, in second-hand wooden pipes (and some new ones) can be bored well off-center. For these reasons it is best to make a paper template of the bottom of each wooden pipe, as described later.

I already had a small scale (i.e., relatively small diameter) Open Diapason rank, and a Salicional, both running form C13 (so the longest pipe in both sets was about 4' speaking length) and Alec located, from a friendly organ builder on the mainland, the Stopped Diapason pipes (running from C1) and a bundle of miscellaneous stoppered wooden pipes for the pedal Quint.

The necessary measurements were taken and noted down in the form of a table. I find it convenient to have a sheet of paper with the 12 notes C through to B in a column down the left-hand edge, followed by vertical columns headed "1--12" then "13--24" then "25--36" and so on, up to "73--84," placed from left to right across the page. This forms a table which will cover an 84-note rank, the biggest usually needed. (Note C85 is only necessary in the case of a rank which runs from 8' pitch to 2' pitch, where the organ has a manual key compass of 61 notes. This C85 pipe needs an additional square to itself.) Every square represents a pipe, and in each one can be written the length and diameter (if metal), together with other details such as size of a rackboard hole, and toe hole etc., which are also measured at this time.

Notice that only the Stopped Diapason rank has its bottom octave (in organ building terms, a "Stopped Bass") the largest pipe of which is, like the other two ranks, something over four feet long. The Salicional and Open Diapason share this bottom octave, as does the 16' pedal stop (the "Harmonic Bass") which produces an acceptable 16' substitute, in the first 12 notes of the pedalboard, by playing the Stopped Bass pipes with the appropriate Quint pipe (from a separate and therefore very soft, 12-note rank of wooden pipes). The resultant note (actually a low hum) which is created from a combination of any stop of 8' pitch and its quint is at 16' pitch. Admittedly, this is much softer than the two pipes actually sounding. The pedals from C13 up play the Stopped Bass again, and then the rest of the Stopt Diapason, thereby sounding at true 16' pitch. These compromises are necessary to reduce the size of the organ, and, if carefully carried out, are soon accepted by the player and listener, especially in a small room.

While there is no substitue for the soft, heavy, warm tone of a full-length Bourdon bass, I have asked many players (including several professionals) their opinion on this "resultant" 16' pedal stop. So far, no one has realized what he was playing until it was pointed out. They all accepted it as a pedal 16'  stop, like any other. The least convincing notes in the bottom octave are, predictably, the smallest three or four. If there is room for full-length pipes down to, say, F#7, so much the better.

It is worth noting that a quinted 16'  effect which uses the pipes of the Stopt Diapason rank only is almost always a failure, because the quint will be too loud. If you have no room for the extra Quint pipes, it is better to use the 8' octave of the Stopt Bass on its own (from pedal keys C1 to B12) before completing the pedal compass by repeating the Stopt Bass followed by the rest of the Stopt Diapason. Another possibility worth considering is a 16' bottom octave in free reeds.

Full-size card or paper templates are needed to represent the metal pipes, as seen from above. It is not normally necessary to make these for every pipe, as different stops usually reduce in diameter, note for note, to a more or less standard pattern. If this pattern is known, the set of templates need cover only the range of diameters from the fattest metal pipe in the organ (in this case C13 of the Open Diapason) down to the minimum spacing dictated by the pipe-valve mechanism. (As direct electric action was being used and the smallest magnets were 3/4≤ wide, with pipes placed directly above the valves, minimum pipe spacing = 3/4≤ + 1/8≤ clearance [= 7/8≤] no matter how small the pipes.)

Like most organ builders, I have a set of these circular templates for general use, so templates for the metal pipes were already at hand, but the wooden pipes had to have paper templates individually made to show their exact shape and the center of the pipe feet. Such a template is made by taking an over-sized piece of paper, drawing on it a circle which equals the diameter of the pipe foot, cutting this out, and sliding the paper up under the pipe and creasing around the four sides. Once the paper is removed and trimmed to size, the original circle can be taped back into place, resulting in an accurate template.

Alec's wooden Stopt Diapason (reputedly by the well-known Victorian organ builder, William Hill) was over 100 years old, and may have been in more than one organ during its lifetime. Its mouths were rather high, which made the tone breathy, and some of the pipes had been mitred, or were cut too short, possibly where they had been in a crowded swell box. But it was basically sound and we went on the basis that it could be made acceptable by repairs, lowering the mouths and re-voicing. The Salicional and Open Diapason ranks were also Victorian, from a local Methodist church. Again, they were not perfectly scaled or voiced for a house  organ, but were basically well-made and capable of re-voicing. All the pipes were measured, and with the tables of measurements and templates to hand, and a given space into which to fit the pipes and action, the process of "setting out" could begin.

An instrument with direct electric action enables the builder to arrange pipework in almost any pattern, within the limits of the room and the physical space taken up by the pipes themselves (or, in the case of the tiny treble notes, the size of their magnets and valves). My preferred system of setting out is slightly unusual, in that I like to place the taller pipes behind the smaller pipes, regardless of their rank. Most other builders would plant pipes in rows, each row being made up from pipes of the same rank.

Secondly, and in common with many of my colleagues, I prefer to plant pipes in "sides," i.e., pipe C1 on the extreme left of the organ, and C#2 on the right, working down to the treble pipes in the middle. In this way, all the pipes of the "C side" (C, D, E, F#, G#, A#) will be on the left, and those of the "C# side" (C#, D#, F, G, A, B) will be on the right.

These two underlying principles result in a pipe set-out which is visually attractive, compact, and which offers the greatest accessibility for tuning and maintenance. Admittedly, it does lead to some complications in the cabling patterns between the console and the magnets, but this is not an insurmountable problem. (In fact, the many cables for this organ were made up, wire by wire, by my school-boy workshop assistant, with no errors at all.)

Alec and I set out our templates on strips of white paper, as wide as Jean would permit, (the 14≤ maximum) and as long as the space available (i.e., the width of the room: 157≤ or just over 13 feet). After a day or two of pushing the templates around, and, bearing in mind the many details such as how the pipes could be best faced away from each other, the space to be allowed for rack pillars, cable registers, assembly screws and many other essentials beyond the scope of this account, we decided upon the ideal arrangement, with the pipes set out on three chests. The chests were placed one above the console, for the treble pipes, and one on each side at a lower level, for the bass pipes. The central chest was just under 13≤ from front to back, and the two other chests were only 9≤ wide. The whole organ would stand in the maximum ceiling height of 91≤ (barely over 71/2 feet). The actual planting pattern was so tight that every possible space has been used, given the limited width and length available. Even so, no pipes are crowded, and all of them have been accommodated. The fronts of the three chests were made from oak-veneered ply salvaged from the old speaker cabinet and console back of the electronic. Consequently, they matched the finish of the console exactly.

Admittedly, there was no room for any casework or building frame, and we had yet to solve the problem of space for the blower, wind pressure regulator, wind trunks, low voltage current supply and one or two other essentials, but these are minor obstacles to the true organ fanatic!

The actual construction of the instrument started with the chests--comprising the pipe ranks, toe boards, or top boards (on which the pipes stand) "wells"  (the sides and ends) and bottom boards. Details of each chest varied with the numbers of rows of pipes, but the sketches showing the basic mechanism will give a good idea of a typical chest in cross-section.

Strips of mdf (a sheet material available in 3/4≤ thickness) were cut for the top boards for each of the three chests, and the pipes centers were punched directly onto them, using the paper setouts, taped down, as a template. Based on these centers, the magnets, valves, pipe racks and the many other details of the mechanism can be marked out and fitted. Unfortunately, a detailed description of this procedure is beyond the scope of a general article such as this. While the basis of the mechanism is shown clearly in the sketch, there are a great many practical details which must be finalized in design and observed in manufacture, if this deceptively simple idea (drilling a hole, screwing a magnet and valve under it, and planting a pipe on top of it) is to be carried through to create a reliable musical instrument. Such a mass of information has not, to my knowledge, ever been written down, as it is essentially based on practical experience over the years. If any readers are interested in further practical details, it may be possible to describe some of the problems involved, and how they are overcome, in a future article, but only a practicing organbuilder can have all the necessary skills and knowledge to cope with every situation, and this makes it impossible to give a general "recipe" for building an organ.

The wind supply is provided by a small electric blower of course, but this one is unusual, in that it was passed on to Alec by an organ-building friend from the days of his original house organ. Indeed, it turned out to be the very same blower, which had returned to him, after an absence of 30 or more years! It proved to be an excellent machine, and very quiet when housed in a new silencing cabinet.

It was necessary to regulate the wind pressure to a value suitable for the pipes and their setting, and, of course, we had no space for traditional bellows. In a case such as this, I used my own design of wind pressure regulator (basically a hinged plate of 1/2≤ sheet material, "floating" over a rubbercloth diaphragm, and supporting some suitably-tensioned springs). Movement of the plate controls a valve which allows wind from the blower through to the chests. As the pipework makes a demand on the supply, the valve opens just far enough to maintain pressure to within 1/8≤ or less at peak demand. This is an acceptable degree of control, and only a very critical ear will notice the slight fall-off in power. Every builder has his favorite design for such a regulator (sometimes called a 'schwimmer' or, in my case, a 'compensator') and they all bear a strong family resemblance. Not all are equally effective, however, and some are prone, under adverse conditions, to fluttering (creating an effect like a very rapid Tremulant). Again, only experience of such devices can provide a way out of trouble, though there are some basic rules in compensator design.

The steady, regulated wind from the compensator is fed to the chest by a rather broad, but shallow, wind-trunk (made in mdf, like the blower box and compensator). This is fixed to the back wall, out of sight, behind the console.

With all the basic elements designed, there still remained the question of the 14≤ limit on width. Obviously, the blower box and compensator were too wide to keep within the limit, so it was decided to camouflage them, together with the circuit boards, transformer/rectifier unit, and other large components.

In the final design, the three chests were screwed to plates of 3/4≤ ply, previously fixed, in a true vertical position, to the rather uneven stone wall. The console was placed centrally, with the two outer chests (holding the bass pipes) low down on each side. The third chest (containing all the treble pipes) was fixed centrally on the wall, just behind and above the console's music desk. Two bookcases were made to fill completely the gap between the sides of the console and the side walls of the house. They were set rather further forward than would be usual, with a broad top which ran back to the wall behind, effectively disappearing under the side chests.

On the left of the console, the bookcase is a real one, with its top extending over the circuit boards and transformer/rectifier unit hidden behind. To the right of the console the seemingly identical bookcase is, in fact, a dummy. Its shelves and books are only about 11/4≤ deep. (One of the more bizarre scenes in the workshop was that of pushing large quantities of scrap books through the circular saw, leaving their spines and an inch or so of paper and cover. These truncated volumes look convincing when glued, side-by-side, onto the foreshortened bookcase back.) The space under the dummy bookcase top contains the blower box and compensator. The bookcases, blower box, compensator, etc., all sit on 3/4≤ ply panels which have been leveled onto the floor.

Once Alec had installed his real books and ornaments, the organ (while visually dominating such a small room, as it must) blended into its domestic setting beautifully, with a spectacular visual touch being provided by a trumpet-blowing angel, carved in oak, which had been salvaged from a local church altarpiece,

What of the finished product? Naturally, the instrument is a compromise--but then this is true of all but the largest organs. It is a pity, for instance, that there was no room for a swell box, or another rank, but it is a wise builder or player who knows when he has gone as far as space and finances will allow. The wooden Stopt Diapason rank had its top lips lowered, and was re-voiced to produce a charming, rather quaint sound, with none of the original's unattractive, breathy tone. The Open Diapason had to be softened to just short of dullness, and now adds considerable fullness and warmth. The Salicional has made an excellent quiet voice, and is also very useful in its other pitches, where it adds brightness without shrillness. This is most important in a small room, and it is worth noting that, the larger the room (up to cathedral proportions) the brighter and more cutting the treble pipework can, and must, be. But the opposite is true for a small space, where top notes can easily become uncomfortably piercing--hence the lack of Mixtures on small house organs with no swell boxes. Many visiting organists, both professional and amateur, have played Alec's instrument since its completion, and all have been pleasantly surprised by its resources and the fact it is possible to produce satisfying performances of both classical and romantic works, albeit with some ingenuity on the part of the player.

True, it would have been possible to install a "large" electronic with three or four manuals, a wide range of stops and artificial reverberation, and I can see the attraction of such an idea, especially for the player whose interest lies in large-scale, romantic works. But, I cannot imagine anything less convincing than the sound of pedal and manual reeds, with Diapasons and mixtures, echoing with a five-second reverberation, across a room some 16 feet long and 8 feet high. The sound of a small organ in a small room, with no reverberation at all, is an authentic one and has a special charm. Whether it be two or three ranks of pipes offered with mechanical action as two or three stops, or whether, as in this case, the ranks are extended to several "stops," the small domestic instrument has a sound and fascination all its own, and is capable of giving much pleasure, both visually and musically, over many years.

 

Peter Jones will be pleased to receive comments, either on this article, or relating to readers' own experiences, at: The Bungalow, Kennaa, St. John's, Isle of Man, 1M4 3LW, Via United Kingdom

 

Manual I

                  8'            Open Diapason A

                  8'            Stopt Diapason B

                  4'            Salicet C

                  4'            Flute B

                  22/3'    Twelfth C

                  2'            Fifteenth A

                                    Man II/Man I

Manual II

                  8'            Stopt Diapason B

                  8'            Salicional C

                  2'            Salicetina C

                  11/3'    Nineteenth C

Pedal

                  16'         Harmonic Bass B & Q

                  8'            Bass Flute B

                  4'            Fifteenth A

                  2'            Salamine C

                                    Man I/Ped

                                    Man II/Ped

Summary

                  A              Open Diapason 73 pipes

                  B              Stopt Diapason 73 pipes

                  C              Salicional 73 pipes

                  D              Quint 12 pipes

1878 Sagar Organ

Central Presbyterian Church, Eugene, Oregon

by Robert Gault
Default

 

In March 2000 two of my organ-builder friends independently sent me notice of the availability of a small English pipe organ, suggesting that it might be suitable for use in the chapel of Central Presbyterian Church. At the time, the organ was located in a private home near Grants Pass, Oregon. I contacted my friend there, Forrest Radley, an organ buff in the process of restoring an historic theatre organ at his home. Forrest kindly visited the organ in question and reported back. Over a period of many months Forrest continued to serve as a valuable link in this project.

 

Although the organ was of English origin, there was no nameplate to indicate the builder. Thanks to e-mail, I contacted organ historians in London. They kindly put me in touch with David Wood, organ builder, of Huddersfield, who assisted with the research and advised me of characteristics to look for in the instrument.

On April 8th my long-time friend Paul Swadener and I drove to Grants Pass and, with Forrest, went to inspect the organ, take pictures, and look for builder clues. This was our first meeting with the gracious owners, Carol and Gerald Betts. On the lead weights of the organ reservoir we found a reverse letter "S". David Wood soon verified the builder as Moses Sagar of Leeds. An inventory list confirmed that he had indeed built an organ for the Anglican Church of Thorp Arch. We still did not know the date of the organ, but we did realize it to be an historic instrument worthy of preservation.

Further investigation revealed that in 1952, after 70 plus years of service, the Thorp Arch Church prepared for a larger organ by selling the Sagar to the nearby East Keswick Methodist Church. Donor gifts there enabled renovation of the organ in 1967. The tubular action was partially converted to electro-pneumatic. At some point the F scale pedalboard was replaced with one of C scale, and five low Bourdon pipes were added at the back of the casework.

The Betts resided in England in 1986 where Gerald served as an engineer with Lockheed. One day he responded to an ad selling the Sagar organ in favor of a larger gallery organ for East Keswick. A hobbyist, Gerald took on the task of installing modern electrical contacts to replace what time and worms had destroyed of the earlier action. From 1988 to 2001 the Sagar kept residence with the Betts in their Grants Pass home.

Meanwhile the wheels turned slowly as the idea of acquiring the organ was presented at Central Presbyterian Church. Committees and the Session eventually approved the estimated cost of renovation and installation. Final incentive was the generous act of the Betts to donate the organ on condition that it would be renovated and used.

On February 13th, 2001, an enthusiastic crew of volunteers loaded the organ in a U-Haul truck for the drive to the shop of Hochhalter, Inc. near Salem, Oregon. This required careful packing of pipes and parts in trays. After an overnight stop in Eugene, the Sagar began a new life under the skilled hands of Lanny and Judy Hochhalter, who devoted more than 716 hours of meticulous work on the project. They also uncovered the Sagar Opus #355, which solved another mystery.

Every effort was made to retain the design integrity of the organ. The original slider chests and stop action remain. The original heavy lead Gedact pipes were stopped with corks 125 years ago. Only one had to be replaced. Instead of modern grill cloth, wood panels were fabricated behind the display pipes as the original design indicated. The mechanically operated swell shades were re-installed as originally built. All of the pipes were cleaned, which improved their quality of sound, but voicing was left unchanged. It was decided to leave the organ at its natural pitch of A442. One of the display pipes of the Open Diapason had to be restored to its original length and some dents were carefully removed. The entire façade was beautifully regilded. The original stencil design was probably removed long ago. Couplers for the Great and Swell to Pedal were restored after being discontinued in a previous renovation. Great amounts of old candle wax were removed from the inside of the organ--evidence of servicing the organ long before the time of electricity. The organ case of golden oak was cleaned and brought back to life with three coats of quality shellac. Happily the old beveled ivory keys have been retained. On the right side of the case can be seen worn slots where handles and gauges once provided for the organ pumper. In other places one can see indication of carved doodles likely left by some bored altar boy. The organ assuredly reflects 125 years of character and service.

With no nameplate on the organ, we again reached David Wood about finding a surviving Sagar organ from which we could get a picture. In the next village, Newton Kyme, a Sagar nameplate was photographed. Our engraver was able to replicate the lettering precisely and a legal ivory nameplate is now in place.

The date of the organ, still a missing fact, finally came to light in a letter from the church warden of Thorp Arch. A small historical brochure about the church noted that the organ had been installed in 1878.

Our next curiosity was attempting to ascertain how many of the more than 60 organs on the Sagar inventory yet remain. By modern times, many of the Sagar organs had been replaced or absorbed into larger instruments. At present, we know that original Sagar organs still exist at nearby Newton Kyme and Darley Methodist Church. Interestingly, builder Peter Wood & Son is concurrently restoring the Darley church organ. Our Sagar, with its original casework, hand-hewn bench, slider chests and pipework, is number three. Most certainly it is the only Sagar organ in America. Currently it is the oldest pipe organ in the Eugene area. In our building also lives the largest church organ in Eugene, a 49-rank Reuter of 1968.

Careful preparation of the chapel platform was required. Work was led by Leland Halberg, who had earlier refurbished the main chancel. An old railing was removed. Heavy plywood was securely anchored with wood screws. A layer of dark parquet flooring complements the wood of the organ and greatly improves the acoustics of the room. Old draperies were removed from the large window area along the south wall. A new wooden cross hangs above the historic communion table. The Rev. John Ewing crafted the cross from the old railing.

On May 23, 2001, our same eager volunteers trucked the organ from the shop in Salem to the chapel at Central. It had been carefully packed in small pieces to clear the narrow doorways of the chapel. Plywood over the pews enabled parts to be easily accessible. Assembly of the organ began immediately and continued over the next week. Blessing of the organ occurred at both services on Pentecost, June 3rd.

The organ is centered architecturally within the chapel arches. This allows it to speak clearly and evenly throughout the room. Doors on either side of the case open for easy accessibility during tuning and maintenance. It is esthetically pleasing to the eye and ear. The tonality is clean and clear, yet warm and mellow. In actual practice, various registrations support the singing of 75-100 in worship. Specifications of the organ include 6 ranks of pipes on slider chests, 2 manuals of 49 notes in F compass, 25-note radial pedalboard in C compass.

Great

                  8'             Diapason

                  8'             Gedact

                  4'             Principal

                                    Swell to Great

Swell

                  8'             Gamba

                  4'             Flute

                                    Octave Coupler

Pedal

                  16'          Bourdon

Couplers

                                    Swell to Pedal

                                    Great to Pedal

Tremulant with variable adjustment

Swell enclosed, mechanical foot control

Total original pipes 270, original pitch A442

 

Thorp Arch Church

Located on the River Wharf by a stone bridge separating it from Boston Spa is All Saints Anglican Church with its 15th-century Norman tower. In Yorkshire, near Wetherby, but situated between Leeds and York, the church actually dates prior to 670 AD. In 1871 the village numbered 368 souls. Three buildings have housed the church through the centuries, including its present Gothic design. The graveyard is adjacent. Inside the furnishings are by the noted woodcarver, Robert Thompson, who "signed" his work in 32 places with the emblem of a little mouse. The altar scene of the Last Supper was carved in Oberammergau, Germany. Moses Sagar built the organ in 1878. The tower bells were recast in 1937.

Moses Sagar

There exists little published information on Moses Sagar. He was one of many organ builders in Leeds during the Victorian era. He established his firm in 1861 and was on the cutting edge of technology introduced in Northern England by the noted builder Edmund Schulze. It was a time of transition from building traditional tracker action and Barker levers to the then new tubular pneumatic action. Sagar, for instance, retained slider chests and mechanical stop linkage. His work shows skilled craftsmanship and the ingenious ability to make the very best use of space. The slider chests are small and compact. No doubt some of this was influenced by limited space and budget constraints. However, quality materials and fine woods are evident. Cork stoppers were introduced in England in about 1870 and Sagar used them in this 1878 instrument. Most of the wooden pipes are thought to be of quality German pine.

For a time Sagar was in partnership with John Piper Radcliffe. By 1881 each man had sons who joined their fathers in separate firms. Sagar and sons Frederick, John, and Matthew continued the business until 1902. The Yorkshire Musician of October 1888 features Moses Sagar with many testimonials to his fine workmanship and custom services.

Additional information, pictures, and sound samples of the Sagar organ may be found on the computer website:

http://www.HochhalterOrgans.com

In the Wind. . . .

John Bishop
John Bishop

Shifty and puffy

It is mid-September in mid-coast Maine, and the days are getting shorter. Sunset here is about sixteen minutes earlier than in New York City, as we are as far east as we are north of the Big Apple. There are four windows facing east in our bedroom that allow us to track the motion of the sun, which is rising further south than it did a month ago. When we are on the water, we notice that the afternoon sun is lower in the sky as the sunlit water sparkles differently than in the height of summer. And the wind changes dramatically with the change of season. In mid-summer, we cherish the warm sea breeze, predominant from the south or southwest, caused by the air rising as it crosses the sun-warmed shore. All that cooler air above the ocean rushes in to fill the void, and we can sail for miles without trimming the sails in the steady and sure wind.

We had our last sail of the season last weekend in lumpy, bumpy wind from the northwest, which is never as steady as the southwesterlies. It is shifty and puffy, and it can be a struggle to keep the boat going in a straight line. Just as you get going, you get “headed” by a burst of wind from straight ahead, or you get clobbered abeam by a twenty-five mile-per-hour gust. Oof.

You have read this kind of thing from me before, thinking about sailboats when I should be writing about pipe organs, but because both are important parts of my life, and both involve the management of wind, I cannot escape it. And I am thinking about it a little more than usual because at the moment I am releathering three regulators for the organ I am working on. My method for assembling and gluing the ribs and frames of a wind regulator involves seven steps:

Glue outside belts on the pairs of ribs.

Glue inside canvas hinges on the pairs of ribs.

Glue canvas hinges around regulator frames and bodies.

Glue ribs to top frames.

Glue ribs/top frames to body.

Open regulator and glue gusset bodies.

Close regulator and glue gusset tails.

It is still officially late summer as I write this, and my personal workshop is a three-car garage. Since we are on the shore, I love to have the overhead doors open to the breezes, though it is humid here. I am using the traditional flake hide glue (the stuff that is made when the old horse gets sent to the glue factory) that you cook in an electric pot with water, apply hot, and wipe clean with a hot-water rag that I keep just hot enough that I can put my hands in to wring the rag dry in the sort of double-boiler from which you scoop oatmeal at a cafeteria line. For the glue to set, the moisture must evaporate, and since the air is humid, I have to wait overnight between each step. Running fans all night keeps the humidity down and speeds the drying. In winter, when the air inside is dry, I can typically do two gluing steps in a day.

One of the regulators I am working on is thirty inches square. For that one I am using around twenty-five feet of one-inch-wide heavy canvas tape for the hinges and a comparable length of laminated rubber cloth for the outside belts. The gussets (flexible leather corner pieces) are cut from supple heavy goat skins that have a buttery texture and are impossible to tear. The key to finishing a wind regulator is finding a combination of materials that are all very flexible and strong, that are easy to cut, and that receive glue well enough to ensure a really permanent joint. If the structural integrity of a regulator is iffy, the wind will be shifty and puffy, and it will be a struggle to keep the music going in a straight line. Just as you get going, you get “headed” by a burst of wind that jiggles the music, or you get clobbered by a jolt from out of nowhere.

 

What’s in a name?

I am referring to these essential organ components as “regulators.” We also commonly call them “bellows” or “reservoirs.” All three terms are correct, but I think regulator is the most accurate description of the function of the thing. Taken literally, a bellows produces air. Air is drawn in when it is opened and pushed out when it is closed, like the simple bellows you have by the fireplace. The hole that lets the air in is closed by an internal flap when air is blown out.

A reservoir stores air. In an organ built before the invention of electric blowers, it was common for an organ to have a pair of “feeder bellows” operated by a rocking handle that blew air alternately into a large reservoir. The feeders had the same internal flaps as the fireplace bellows. The top of the reservoir was covered with weight (bricks, metal ingots, etc.) to create the air pressure, and the air flowed into the organ as the organ pipes consumed it. The bellows were only operated, and the reservoir was only filled when the organist was playing. Just try to get that kid to keep pumping through the sermon. . . .

With the introduction of the electric blower, it became usual to turn the blower on at the beginning of a concert or service and leave it running. That made it necessary to add a regulating valve between the blower and the reservoir. When the reservoir filled and its top rose, the valve closed, stopping the flow of air from the blower, so the system could idle with the blower turning and the reservoir full. When the organist played and therefore used air, the top of the reservoir would fall, the valve would open, and the air could flow again. Like before, there was weight or spring pressure applied to create the proper wind pressure. The addition of that valve added the function of pressure regulation to the bellows. In an organ with an electric blower, the bellows are storing and regulating the pressurized air. Calling it a regulator seems to cover everything.

 

The longer you go, the heavier you get.

Twice in my life, I have heard EMTs comment about my weight when lifting the stretcher, once after a traffic accident in the 1970s, and again after a fall in an organ seven years ago. But that is not what I am talking about here. We usually think of an inch as a unit to measure length or distance, so how can it refer to pressure, as in, “the Swell division is on six-inches of pressure?”

In industrial uses of pressurized air, more familiarly, in the tires or of your car, the unit of measure is pounds per square inch (PSI). I inflate the tires of my car to 35 PSI, and I use 80 or 100 PSI to operate pneumatic tools. But while my workshop air compressor gauges those high pressures, the actual flow is pretty small, something like two cubic feet per minute.

Organ wind pressure is much lower, and we measure it as “inches on a water column.” Picture a clear glass tube in the shape of a “U” that is twenty-inches high. Fill it halfway with water, and apply pressure to one side of the U. The water goes down on that side of the tube, and up on the other. Use a ruler to measure the difference, and voilà, inches on a water column, or centimeters, or feet. You can easily make one of these using plastic tubing. The little puff it takes to raise three inches of pressure is just the same little puff it takes to blow an organ pipe you are holding in your hand. Instead of the actual tube full of water, we use a manometer that measures the pressure on a gauge without spurting water onto the reeds.

Did you ever wonder how the conversion works? One PSI equals almost 28 inches on a water column. Five inches on a water column equals about .18 PSI. And how does that relate to the organs you know? In a typical organ, it is usual to find wind pressures of three or four inches. In general, smaller organs with tracker action might have pressures as low as forty millimeters, or less than two inches. In a three-manual Skinner organ, the Great might be on four inches, the Swell on six, and the Choir on five. In a big cathedral sized organ, solo reeds like French Horn and English Horn might be on fifteen inches, while the biggest Tubas are on twenty-five. The world-famous State Trumpet at the Cathedral of Saint John the Divine in New York City is on fifty inches (incredible), and in the Boardwalk Hall organ in Atlantic City, New Jersey, the Grand Ophicleide, Tuba Imperial, Tuba Maxima, Trumpet Mirabilis are on one hundred inches of pressure, or 3.61 PSI! Stand back. Thar she blows!

Once you have determined pressure, you also have to consider volume. A twenty-rank organ at three inches of pressure might need 1,000 cubic feet per minute at that pressure to sustain a big chord at full organ. Some of the largest organ blowers I have seen are rated at 10,000 CFM at ten inches of pressure. And when you lift the biggest pipe of a 32 Open Wood Diapason and play the note as an empty hole, you will blow your top knot off. It takes a hurricane coming through a four-inch toehole to blow one of those monster organ pipes.

 

All the air you could wish for

Before the introduction of the electric blower, most organs had at least two bellows. One would be in free fall, supplying pressure to the organ while the other was raised by the organ pumper. The system I described earlier with two feeders and a reservoir was a great innovation, because once the reservoir was full, the pumper could slack off a little if the organist was not demanding too much wind. The six-by-nine-foot double-rise reservoir in the heart of a fifteen-stop organ by E. & G. G. Hook or Henry Erben has huge capacity, and can blow a couple 8 flutes for quite a while without pumping. Organs by Hook are great examples of efficiency, with pipes voiced in such a way as to produce lots of tone with very little air, and even large three-manual organs are pumped by just one person using the two-feeders-and-a-reservoir system.

The electric blower changed everything. Organbuilders and voicers could now work with a continuous flow of wind at higher pressures than were available before. New styles of voicing were invented, and along with the introduction of electric keyboard actions, organs could be spread around a building, creating stereophonic and antiphonal effects. When organs were first placed in chambers, and their sounds seemed remote, the builders raised the pressure and increased the flow of air through the pipes, driving the sound out into the room.

While modest organs with electric blowers usually have only one wind regulator, larger instruments can have dozens. In a big electro-pneumatic organ, it is common to have a separate regulator for each main windchest. That is how Ernest Skinner could have the various divisions of an organ on different wind pressures, as each individual regulator can be set up to deliver a specific pressure.

 

But what about wiggly?

When I mention factors that can add to the stability of an organ’s wind system, I raise the question about “wiggly wind,” or “shaky wind,” both somewhat derogatory terms that refer to the lively flexible wind supplies in smaller and mid-sized mechanical action organs with lower wind pressure. When wind pressure is low and an entire organ receives its air from a single regulator, the motion of the wind can be affected by the motion of the music. It is especially noticeable when larger bass pipes are played while smaller treble pipes are sustained. At its best, it is a delightful affect, akin to the natural flow of air through the human voice. At its worst, it is a distraction when the organ’s tone wobbles and bounces.

This phenomenon is part of the fierce twentieth-century debate concerning “stick” organs versus so-called “industrial-strength” electro-pneumatic organs. I have been servicing organs for more than forty years, and I have often thought that much of the criticism of the emerging tracker-action culture was because craftsmen were reinventing the wheel, learning the art of organbuilding from scratch. They may have measured the dimensions of an organ bellows accurately but failed to compensate for the fact that the ancient model did not have an electric blower. And let’s face it: a lot of flimsy plywood tracker organs were built in the 1960s and 1970s, enough to give that movement a bad name from the start.

The evolution of modern tracker organs toward the powerful, thrilling, reliable, sonorous instruments being built today has much to do with how much the craft has learned about the management of wind over the years. A little tracker organ built in 1962 might have key channels and pallets that did not have the capacity to blow their pipes. It might have flexible wind conductors to offset bass pipes that were too small and that jiggled when the notes were played, causing the tone to bounce. It might have bass pipes with feet that were too short, so air did not have a chance to spread into a dependable sheet before passing between the languid and the lower lip. All of these factors affect the speech of the pipes, giving the impression that the organ is gasping for air. And worse still, you might hear the pitch drop each time you added another stop. I have worked on organs where adding an 8Principal made the 4Octave sag. How do you tune a thing like that? I marvel now at how air pressure moves through the best new tracker organs, especially at the wonderful response of large bass pipes. Organs by builders like Silbermann do not lack in bass response. Once the revival movement was underway in the middle of the twentieth century, it took a few decades to really start getting it right.

§

The organ I am working on today is a simple little thing with two unit action windchests. Each has its own regulator, and there is a third “static” regulator that mounts next to the blower. The blower produces seven inches of pressure; the static regulator brings it down to five inches and distributes the wind to the other two regulators, which each measure out four inches. The biggest pipes in the organ are the 16Bourdon, and though there are only ten ranks, it is a unit organ, and a lot of pipes can be playing at once. It is destined to be a practice instrument for a university organ program, so I know that talented and ambitious young organists will be giving it a workout as they learn the blockbuster literature we all love so much. I hope that those students never have to worry about having enough air. And perhaps Maine’s salty breezes will travel with the organ, adding a little flavor to the mix.

Cover feature

Default

Taylor & Boody Organbuilders, Staunton, Virginia

Goshen College, Goshen, Indiana

About the organ.

Designing an organ for Rieth Hall at Goshen College was a
pleasure. The opportunity to place the organ in the traditional location, high
in the rear gallery, was ideal both visually and aurally. The form and
proportions of the hall, with its austere yet warm and inviting interior,
called the organbuilder to respond with similar clarity and restraint. The
ample height of the room suggested a plain, vertical configuration of the
instrument, on which natural light from the clerestory windows would fall
gently. Everything about the hall spoke of its solid construction and honesty
of materials, qualities that we strive to reflect in our organs. Likewise the
acoustical properties of the hall, so warm and reverberant and at the same time
intimate and clear, allowed the organ’s tone to develop freely without
being forced. The result is an endearing musical instrument that is
aesthetically inseparable from the space in which it stands.

Initial inspiration for the Goshen case came from the organ
built by David Tannenberg in 1774 for Trinity Lutheran Church in Lancaster,
Pennsylvania. While only the case and façade pipes of that lovely
instrument have survived, they constitute the finest example we have in our
country of south German case architecture from the 18th century.
Tannenberg’s use of the double impost, with its Oberwerk division
gracefully placed as a reflection of the Hauptwerk below, was typical of organs
in his native Saxony and Thuringia. Other exterior influences from that time
and place include the two swags that bracket the center tower, and the broad
lower case that supports the full width of the impost and omits the spandrels
common to earlier styles. Apart from its simple springboard moldings, the
Goshen case is relatively flat and plain by comparison with its historical
counterparts. Its only bold three-dimensional element is the polygonal center
tower. The small pointed towers in Tannenberg’s design are here merely
implied by the V-shaped arrangement of foot lengths in the tenor fields. The
use of six auxiliary panels to raise the smaller pipe feet above the impost
moldings adds interest to the design. The considerable height of the lower case
was determined by the need for a passageway over the 2-foot concrete riser
behind the organ. This height gave space between the console and impost for the
eventual inclusion of a small Brustwerk with several stops for continuo
accompaniment. Cabinets for music storage are built into the back on both sides
of the lower case.

Another aspect of the design reminiscent of 18th-century
south German traditions is the position of the windchests in relation to the
action. The two windchests of the Hauptwerk are spaced apart from the center of
the case by the width of the keyboards. This leaves room for trackers of the
Oberwerk to reach their rollerboard without blocking access to the Hauptwerk
action and its pallets. It also provides optimum space for 8’ bass pipes
at the sides and leaves room for tuning the tenor pipes of the Hauptwerk with
only minimal obstruction by the Oberwerk rollerboard. The windchests for the
Pedal are located behind the case at the level of the impost, a placement that
Tannenberg could also have used.

Both the playing action and stop action are mechanical. The
manual keys are hinged at the tail and suspended from their trackers. There are
no thumper rails to hold the keys down, so they are free to overshoot slightly
when released, as is the case in traditional suspended actions. Trackers,
squares and rollers are all made of wood. There is no felt in the action. Keys
are guided by pins at the sides. Together these details combine to give a
feeling of buoyancy and liveliness reminiscent of antique instruments. The aim
is not so much to provide a light action as to arrive at one having the mass
and friction appropriate to the size and character of the organ. Such an action
may need occasional minor adjustment of key levels with changes in humidity,
but this is a small price to pay for the advantages gained over more sterile
modern alternatives. 

Wind is supplied by two single-fold wedge bellows (3’ x
6’) fed by a blower located in a small room below the organ. Natural
fluctuations of the wind pressure in response to the playing contribute to the
lively, singing quality of the organ’s sound. A wind stabilizer can be
engaged when unusually heavy demands on the wind system call for damping of
these fluctuations. The organ’s single tremulant is made in the old-fashioned
beater form. On seeing a tremulant puffing away in one of our organs, a
Japanese friend remarked that the organ was laughing! It is useful to think of
an organ’s wind as its breath and the bellows as lungs, for the
instrument’s appeal is closely tied to our perception of its lifelike
qualities. 

The tonal character of an organ is rarely revealed by its
stoplist. This is particularly true in an instrument of only twenty-four stops.
Once the builder accepts the constraints of a given style and the essential
registers have been chosen, there is usually little room or money left to
include stops that would make a modest design appear unique on paper.
Fortunately for the art, the musicality of the organ is not bound by its
stoplist; rather, it is determined by a host of other complex factors. These
can be partially defined in the technical data of pipe scaling and
construction, general design parameters, materials and the like, but in reality
much more rests on the elusive criteria of experience, skill and taste of the
builder. Taken together this means that each new organ, albeit small, presents
fresh opportunities for artistic expression. It is important that all the pipes
speak promptly, be they reeds or flues, except in the case of strings, which
gain charm from their halting speech. It is less important that the pipes
produce precisely the same vowel sounds from note to note, for here variety
adds refreshing character and interest to the organ.

At Goshen we chose to voice the 8’ Principal to be
somewhat brighter and richer in overtones than has been our wont. This was
achieved by giving the pipes lower cutups than was customary in German and
Dutch organs of the 17th century and before. The five distinctly different
8’ flue stops on the manuals deserve special mention. Although all
followed scaling patterns we have used frequently in the past, when voiced they
proved to be unusually satisfying, particularly in combination with each other.
Whenever the 16’ Bordun is used with them a magical new dimension is added
to the sound. If, for example, one draws the Bordun with the Viol da Gamba, the
effect is that of a quiet 16’ Principal. Used with the Spillpfeife the
Bordun reverts to its role as a flute. In an organ of this size it is crucial
that every stop work as well as possible with every other. Following south
German practice, both 8’ and 4’ flutes on the Hauptwerk are made in
the same form. This duplication of flutes within the same family was not the
custom in the north, where lower pitched flutes were usually stopped and those
above them progressively more open. The Oberwerk configuration at Goshen with
its two stopped 8’ registers and partially open 4’ Rohrflöte is
typical of the northern tradition. We look forward to the day that the 16’
Violonbass with its cello-like speech can be added to the Pedal.
style="mso-spacerun: yes"> 

The distinctive musical effect of the Goshen organ is
strongly colored by the use of the recently released Bach-Lehman temperament
described in the accompanying article. Because the completion of the organ in
February coincided with the publication in Early Music of Bradley
Lehman’s treatise on J. S. Bach’s temperament, we chose to tune the
organ according to his plan. Here was the ideal opportunity to try the
temperament on an organ built in Germanic style and at the same time to honor
Dr. Lehman as a distinguished Goshen alumnus for his work in this field. The
experiment has been a fascinating one. It has provided a place to hear
Bach’s organ music as we have not heard it before. We are honored to have
played a part in translating the dry mathematical numbers of this temperament
into the vibrant sound of the organ. 

With few exceptions the many parts of the organ were
constructed from raw materials in our Virginia workshop. Through the skills of
each craftsman the design moved from an idea to paper and then through raw wood
and metal into a large and impressive object. Note by note the tonal picture
has been filled in by voicing and tuning until in the end we experience a new
instrument with an identity all its own. We hope that it will give pleasure to
those who play and hear it far into the future.

--George Taylor

The organ project at Goshen College

“Dienlich, Ordentlich, Schicklich, Dauerlich”

In 1999 we were asked by the organ consultant for Goshen
College, Roseann Penner Kaufman, to make a proposal for the new Goshen College
Music Center. As with any new project, I went to Goshen full of excitement at
the promise of participating in what was to be a spectacular project. My
enthusiasm was short-lived when I saw the design for the recital hall. It was a
standard fan-shaped, sloped-floor, small college recital hall, with theatre
seats and carpet in the aisles. The space for the organ was planned in a niche
at the back of the stage. The design would have been fine for small chamber
recitals, but it was not a proper home for an organ. The prospects for the
organ looked bleak. We would not have felt productive or inspired. We always
say that the room is more than half the organ. I took a deep breath and told
the Goshen committee what I thought of the plan. The committee listened and
asked us to offer suggestions on how the recital hall might be designed to work
best with the musical programs envisioned for this space.

I returned to Staunton eager to develop a plan. One of the
first things I did was to research the Mennonite Quarterly Review for articles
describing historical Anabaptist worship spaces. I hoped that the essence of
these rooms would lead me to an aesthetic that would tie the new hall to the
old tradition, which would, in turn, also be good for music, especially the
organ. My research acquainted me with four German words used to express the
qualities of the historical spaces: dienlich, ordentlich, schicklich and
dauerlich--serviceable, orderly, fitting and lasting. I also found prints
of the interiors of some of these churches. Rectangular in shape with open
truss timber roof framing, clear glass windows, galleries on several sides,
rough stone floors, moveable chairs, unadorned, honest and powerful, these
spaces had all the qualities that I was looking for. They also had enduring
musical-acoustical qualities and so many are used today for concerts.

The simple sketch that I made went first to the Goshen organ
committee who, led by Doyle Preheim and Chris Thogersen, embraced the plan.
Then the concept went to Rick Talaske and his team of acousticians. They
transformed the plan into practical geometry and surface treatments to make the
space an acoustical success. Mathes Brierre Architects took the acoustical plan
and translated it into a visual design that evokes the warehouse or
brewery-turned-church concept of the early Dutch Mennonite spaces. Schmidt
Associates worked through the technical details with Casteel Construction to
conceive the simple pre-cast concrete panels and graceful curved steel arches
that make the hall appealing in its architecture, superior in acoustical
performance and straightforward and durable in construction. There was creative
and sensitive work done by a Goshen group concerned with decor and furnishings.
The result is successful beyond our expectations. The collaboration of all the
partners made the project exceed the ability of any one of us.

Once the hall was underway, we scheduled a meeting at St.
Thomas Fifth Avenue in New York with a group from Goshen and Calvin and Janet
High from Lancaster, Pennsylvania. We had a great day in New York showing
everyone our organ in the gallery of St. Thomas. The Highs’ enthusiasm
for the St. Thomas organ and the Goshen Music Center paved the way for their
generous gift that underwrote the cost of the organ.

We realized that the floor area of Rieth Hall was small in
relation to the height. We saw that if there could be the addition of one more
bay to the length there would be significant improvement in the proportions of
the space and at least 50 more seats could be added. Again, the Goshen design
group supported our suggestion. At a time in the project when the building
committee was attempting to control costs and squeeze performance out of every
dime, they found the funds for this most important late addition.
style="mso-spacerun: yes"> 

I predicted at the time we were creating the designs for
Rieth Hall, that the unique qualities of this space would have something to say
to the Goshen students about music and worship. This prediction has been
realized. First, there is genuine enthusiasm for a cappella singing in Rieth
Hall, encouraging this wonderful Mennonite tradition. Second, there has been a
spontaneous seizing of the space by the students for their own student-directed
Sunday worship. In this age of searching for the right path in worship and
liturgy, of debating the influence and appropriateness of mass media and
popular music for worship, we have built something at Goshen College that
reaches across the span of time to those Mennonite roots. Led by the seemingly
old-fashioned qualities of dienlich, ordentlich, schicklich and dauerlich, we
have made a  music space and organ
that inspire and excite us to make music and to celebrate and serve our God and
Creator.

Wood and the Goshen organ

The traditional pipe organ is a wooden machine. Early on in
our careers as organ builders we realized that getting control over our
materials in both an aesthetic and technical sense was essential to our success
as organ makers. Our first path was to make friends with our neighborhood
sawmillers. One of these was an octogenarian whose experience reached back to
horse logging and steam power. He taught us the value of long, slow, air-drying
of lumber. He also knew the old traditions of sawing, how to take the tension
out of a log, how to saw through the middle of the log and keep the boards in
order so that the cabinetmaker could match the grain. He remembered the methods
of quarter sawing that impart the most dimensional stability to the boards and
in oak bring out the beautiful fleck of the medullary rays. We have built our
own sawmill based on a portable band saw. For quarter sawing, we have built a
double-ended chain saw that can split logs up to 60 inches in diameter. The
half logs (or quarters in extremely large timber) are then aligned on our band
saw and sawn in a radial fashion into boards. This lumber is then air-dried for
a number of years. At the end, we put the wood in our dry kiln and gently warm
it up to stabilize the moisture content at 8% to 10%.

Oak is the traditional wood of Northern European organ
building so it was natural for us to choose white oak for the Goshen organ. We
have long admired the Dutch and German organs dating back to the 16th century.
The earliest organs show only the natural patina of age and no finish; the
concept of finishing wood as in varnishing or oiling came well into the 18th
century. We followed this earlier practice for the Goshen organ. The oak has
been hand-planed to a smooth polish, much smoother than can ordinarily be
produced with sanding. The hand-planed wood will resist dirt. We feel there are
also musical benefits from using wood in its natural state. The case and
carvings together with all the interior parts transmit sound energy and reflect
and focus the sound of the pipes. Also, the open pores and surface
imperfections of the natural wood have an effect on the sound reflection.

Another aspect of wood use in historic organs is how
efficiently the old builders utilized their wood. Before the age of machinery,
cutting, transporting and converting timber to sawn, dried lumber ready for use
was costly. The best wood was always used for the keyboards, playing action,
wind chests and pipes. The next selection went to the most visible parts of the
case, especially the front of the organ. The rest was used for carvings, heavy
structural members, walkways, bellows framework and back panels. Some of this
wood shows knots, cracks and other defects that might offend our modern sense
of perfection. However, in addition to demonstrating good wood utilization, the
varying density and differences in surface texture of these so-called defects
may indeed benefit the music. How we perceive the sound of an organ is a very
complex and subtle equation. This is one of the wonderful aspects of the real
pipe organ that differentiates it from the sterile sound of the electronic
substitute. We feel it is good stewardship to apply the hierarchy of selection
as practiced by the old masters. We try to use all the wood, through careful
selection, with thoughtful conservation of a vanishing resource.

--John Boody

Acoustic design of Rieth Recital Hall at Goshen College

In 1998, the design team of design architect Mathes Group
(now Mathes Brierre Architects), architect of record Schmidt Associates and
acoustician The Talaske Group (now Talaske) began preliminary work on a new
music education and performance building for Goshen College’s campus.
This project was the College’s greatest building investment to date and
they were determined to do things right . . . with a very modest budget. The
Recital Hall (now Rieth Recital Hall) was slated to house a new tracker organ
of exceptional quality. As acousticians, we offered some general planning
recommendations--not the least of which was a 50-foot ceiling
height--and recommended that the organ builder be hired as soon as
possible.

Enter John Boody of Taylor & Boody, organ builders from
Virginia. John energized the subsequent meetings with some profound advice that
proved to set the final direction for the space. He moved our thinking from a
“fixed” seating configuration to a flexible arrangement based on a
flat floor where seats can face either end of the room. This unique concept
facilitated the accommodation of a conventional “recital hall” or
assembly arrangement with musicians or presenters on a small stage. The cleverness
of the concept is the seats can be turned to face the opposite direction in the
room, offering a classic organ recital arrangement. Furthermore, John
recommended that the proportions of the room would be better served if
lengthened by adding another bay of structure. These fundamental planning ideas
changed the direction of the design in perpetuity.

We embraced these new directions yes">  and identified the many other room acoustics design features
that would support the client’s needs. The 50-foot ceiling height remained,
and we worked with the architects and construction manager to render the room
as a sound-reflective concrete enclosure, embellished with wood. The goal was
to maintain the warmth of sound created by the organ. Within the “theatre
planning” process, we guided and exploited naturally occurring
opportunities for introducing sound diffusing shaping to reflect low- and
mid-pitched sound in all directions--by introducing one side balcony and a
rear balcony, recesses from circulation paths and recesses created by
deeply-set windows. We recommended deliberate articulation of the walls to
diffuse mid- and high-pitched sound. Wood surfaces were detailed to minimize
absorption of low-pitched sound. Retractable velour curtains and banners were
recommended in abundance and specified by Bob Davis, theatre consultant.
Architecturally, curtain and banner pockets were created so the sound-absorbing
materials could be retracted completely on demand. These features make possible
a broad “swing” of the sound of the room from very reverberant for
choral and organ performance to articulate for assembly events or amplified
music performance. Fundamental to the acoustic design was the need for silence.
This was accomplished by structural discontinuities in the building (acoustic
isolation joints) and the proper placement and design of heating and air
conditioning systems.

Within their mission statement, Goshen College states:
“Musical expression is a human manifestation of the divine impulse and,
as such, serves as a window into the individual soul, a bridge between human
beings and a means of corporate religious experience.” In light of the
students adopting the Rieth Recital Hall for their weekly convocations and the
many other uses, we are pleased to say the happy story continues!

--Rick Talaske

Bach temperament

This organ is the first since the 18th century to use Johann
Sebastian Bach’s tuning, as notated by him in 1722 on the title page of
the Well-Tempered Clavier. This tuning method is a 2004 discovery by Bradley
Lehman. The article about this discovery is published in the February and May
2005 issues of Early Music (Oxford University Press), and further details are
at <www.larips.com&gt;.

The layout, dividing the Pythagorean comma, is:

F-C-G-D-A-E = 1/6 comma narrow 5ths;

E-B-F#-C# = pure 5ths;

C#-G#-D#-A# = 1/12 comma narrow 5ths;

A#-F = a residual wide 1/12 comma 5th.

In this tuning, every major scale and minor scale sounds
different from every other, due to the subtle differences of size among the
tones and semitones. This allows music to project a different mood or character
in each melodic and harmonic context, with a pleasing range of expressive
variety as it goes along. It builds drama into musical modulations.
style="mso-spacerun: yes"> 

The result sounds almost like equal temperament, and it similarly
allows all keys to be used without problem, but it has much more personality
and color. In scales and triads it sounds plain and gentle around C major (most
like regular 1/6 comma temperament), mellower and warmer in the flat keys such
as A-flat major (most like equal temperament), and especially bright and
exciting in the sharp keys around E major (like Pythagorean tuning, with pure
fifths). Everything is smoothly blended from these three competing systems,
emerging with an emphasis on melodic suavity.

The following chart shows the relative size of each major
third, resulting from each series of the intervening four fifths. This system
of analysis is from the 1770s, published in the theoretical work of G. A. Sorge
who was a former colleague of Bach’s. The intervals having higher numbers
sound spicier, more restless. In this measurement, a value of 11 would indicate
a major third that is one syntonic comma too sharp (a “Pythagorean major
third,” having been generated by four pure fifths).
style="mso-spacerun: yes"> 
A pure major third would be represented
here as 0.

Bb-D    6
style='mso-tab-count:1'>            
D-F#
    7
style='mso-tab-count:1'>            
F#-A#
8

Eb-G    7
style='mso-tab-count:1'>            
G-B
      5
style='mso-tab-count:1'>            
B-D#
   9

Ab-C    8
style='mso-tab-count:1'>            
C-E
       3
style='mso-tab-count:1'>            
E-G#
   10

Db-F     9
             F-A
       3
style='mso-tab-count:1'>            
A-C#
   9

Equal temperament, as opposed to the variety shown here, has
a constant size of 7 in all twelve of the major thirds.

In functional harmony, the Bach tuning sets up especially
interesting contrasts within minor-key music. The key of A minor has the
plainest tonic juxtaposed with the most restless dominant. F minor, a major
third away, has the opposite relationship: troubled tonic, calm dominant. And
C# minor has the average character between these behaviors, where the tonic and
dominant are both moderately energetic. 

In major-key music, the tonics and dominants have characters
similar to one another. The sizes of major thirds change by only 1, 2, or 3
units from each key to its neighbors, moving by the circle of fifths (through
typical subdominant/tonic/dominant progressions). Any change of Affekt is
therefore gradual and subtle, as if we never really leave the home key
altogether but it feels a little more or less tense as we go along.

In any music that modulates more quickly by bypassing such a
normal circle-of-fifths cycle, the contrasts are momentarily startling. That
is, the music’s dramatic harmonic gestures become immediately noticeable,
where the major thirds have changed size suddenly from one harmony to the next.
This comes up for example in the Fantasia in G Minor (BWV 542), Gelobet seist
du, Jesu Christ (BWV 722), and the fourth Duetto (BWV 805), and especially in
music by the Bach sons.

This system turns out to be an excellent tuning solution to
play all music, both before and after Bach’s. It is moderate enough for
complete enharmonic freedom, but also unequal enough to sound directional and
exciting in the tensions and resolutions of tonal music.

A recording will be ready for release this summer, including
music by Bach, Fischer, Brahms, et al.

--Bradley Lehman

A brief history of the organ in the Mennonite Church

Some people might find it unusual to find such a remarkable
organ in a Mennonite college. Aren’t the Mennonites those folks with the
buggies and suspenders? It is true that some Mennonite congregations still take
literally founder Menno Simons’ caution against the organ as a
“worldly” invention, but most, especially in the last fifty years,
have embraced it as a vital contributor to the musical and worship life of the
community. 

The Mennonite Church has its beginnings in the 16th-century
Protestant Reformation. Because of persecution, most of the early worship
services were held secretly, in homes or out-of-the-way places. Mennonites also
believed that the true church existed in small, simple gatherings; therefore,
it was uncommon for early Mennonites to even set aside a separate building for
worship. 

Two hundred years after the beginning of the movement,
churches in Germany and the Netherlands had grown to the point of meeting in
dedicated buildings, and by the 1760s several in urban areas had installed pipe
organs. It was another two hundred years, however, before organs became common
in the Mennonite conference that supported Goshen College. Even now, the organ
is not necessarily assumed to support congregational singing, but contributes
other service music. Organ study is now offered at all of the Mennonite Church
USA-affiliated colleges, and the new Taylor & Boody organ at Goshen will
certainly have a profound impact on the future of worship and organ study
throughout the denomination.

--Roseann Penner Kaufman

Roseann Penner Kaufman, DMA, is adjunct instructor in organ
at Bethel College, N. Newton, Kansas, a four-year liberal arts college
affiliated with the Mennonite Church USA. She also serves as director of music
for Rainbow Mennonite Church in Kansas City, Kansas. Dr. Kaufman served as the
consultant to Goshen College for their organ project.

Specifications for Opus 41

Hauptwerk

16' Bordun (C-D# wood, rest metal*)

8' Principal (77% tin)

8' Spillpfeife

8' Viol da Gamba (77% tin)

4' Octave

4' Spitzflöte

3' Quinte

3' Nasat

2' Superoctave

IV-V Mixtur

8' Trompet

Oberwerk

8' Gedackt (99% lead)

8' Quintadena

4' Principal (77% tin)

4' Rohrflöte

2' Waldflöte

II Sesquialtera

IV Scharff

8' Dulcian

Pedal

16' Subbass (wood)

(16' Violonbass) space prepared

8' Octave

4' Octave

16' Posaune (C-B wood, rest 99% lead)

8' Trompet (99% lead)

Couplers

Oberwerk / Hauptwerk

Hauptwerk / Pedal

Oberwerk / Pedal

Tremulant to entire organ

Mechanical key and stop action

Compass: manual 56 notes C-g''', pedal 30 notes C-f'

Lehman-Bach temperament

Interior metal pipes of hammered alloys

*All unmarked metal alloys of 28% tin, 72% lead

Case of solid white oak

Windchests of solid oak, pine & poplar

Number of pipes: 1604

Wind pressure: 75mm

Wind stabilizer

The builders

George K. Taylor

John H. Boody

Bruce Shull

Emerson Willard

Christopher A. Bono

Kelley Blanton

Chris A. Peterson

Sarah Grove-Humphries

Robbie Lawson

Jeffrey M. Peterson

Larry J. Damico

Holly Regi

Thomas M. Karaffa

Bob Harris

Katie Masincup

Ryan M. Albashian

Kristin E. Boo

Current Issue