Skip to main content

Pipes with Digital—Not Digital with Pipes

Joseph E. Robinson

Joseph E. Robinson received his B.A. from California State University at Long Beach and his M.A. from Occidental College in Los Angeles. He studied piano with Charles Shepherd and organ with Clarence Mader, Paul Stroud and Robert Prichard. During 1970–1971 he was an organbuilding apprentice with the Schlicker Organ Co. under the direction of Herman L. Schlicker. He was organist at the University United Methodist Church in Buffalo, New York, and later at St. James’ United Methodist Church in Pasadena, California.
Now a retired business systems analyst, he is currently organist for the Aliso Creek Ward, Church of Jesus Christ of Latter Day Saints, and a member of the Orange County California chapter of the American Guild of Organists. He is very grateful to his wife Pat, without whose support a large residence pipe organ would not have been possible. His interest in pipe organs and their music was sparked years ago when, as a sixth grade student, his class was taken on a field trip to a recital on the Mormon Tabernacle organ.

Default

Graduate school was a joy, offering full-time study of music and the use of three fine instruments (two 4-manual Aeolian-Skinners, one 3-manual Schlicker). But that happy situation was not to last, the real world providing a career in information technology with employers adamantly against a church job. With payroll usually due Friday morning, any complications that occurred on Thursday had to be solved. “Sorry, I have to go to choir practice” was unacceptable.
Missing the superb organs of graduate school, I thought that my need for an instrument might be fulfilled by a fine residence instrument. With great optimism, in 1980, I bought a large 4-manual Casavant console. It would take, I figured, about 27 ranks to do what I “needed” done. But even at that, I would only use a small portion of the console, unless I resorted to horrendous unification. Perhaps the resources could be expanded with analog electronic generators. No, that sound simply was not good enough.
Within the last decade, the major digital organ companies (Allen, Rodgers, Ahlborn-Galanti, Johannus, etc.) have produced reasonably priced MIDI modules with digital sampling that have a lot to offer. The lessons learned in adding four of these units to my residence pipe organ provide the material for this article. I now have 20 ranks of pipes playing and four MIDI modules. Equipment The four modules are an Ahlborn Classic Archive module, an Allen MDS Expander II, the Rodgers MX-200, and a custom Cavaillé-Coll sampled module installed on an Ahlborn chassis. Syndyne LS6401 stop controllers control the two Ahlborn-based modules. All the modules are controlled by normal stops and pistons.

Speaker placement

I connected the first module purchased to my high-quality stereo system. The loudspeakers were on the opposite side of the room from the pipe ranks. Such placement only served to accent the differences between the digital stops and the real pipes. The best place for the speakers turned out to be behind the pipe chests with the speakers pointing at the wall rather than the listeners. Sound now bounces off the wall and travels through the pipe ranks before arriving at the listener. Now there is cohesion of pipe and digital sound that is light years ahead of the original placement. Proper speaker placement can be the difference between success and mediocrity.
Experience has shown that for my residence, I did not need special “organ speakers,” but high-quality stereo speakers do the job splendidly. Since these modules have 32' stops, there are four powered subwoofers that are rated flat (+ or – 3 db) down to 20 Hz. These 32' stops require this kind of support if they are not going to just fizzle out as you approach low C.

Level balance

Each of the modules includes a big reed of some sort (i.e., Festival Trumpet, Trompette en Chamade, Spanish Trumpet, and Royal Trumpet). These and other stops can be set to appropriate high volume levels. That approach results in your organ becoming a “digital organ with pipes.”
My dominant manual pipe reed is a Trompette Musette. So I set the volume level of all the digital big reeds to be slightly less than that. Next in power in the pipes is a Dulzian. All digital trumpets are set to be slightly less than it is. Third in the reed pipe ranks is a Krummhorn. The digital Hautbois, Clarinette and so forth are set in level slightly below that. A similar pattern is used for all the flue stops. In this manner the full ensemble is a pipe-dominated ensemble. It is very tempting to do otherwise, but the cost of doing otherwise is to turn your pipe organ into an electronic.

Tuning

Pipes vary in pitch with change in weather. MIDI modules do not. The modules need to be tuned to the pipes if they are to blend in. That is easily accomplished. Finding what works and what does not Each of these modules from these competing manufacturers has different strengths and weaknesses. Furthermore, even within the same product, the quality of digital sampling can vary greatly. For example, the Rodgers MX-200 contains a 32' pedal Bazuin that is almost good enough to justify the cost of the unit by itself. On the other hand there is an ensemble Principal chorus 8', 4', 2' that to my ear sounds like a 1940s electronic with Leslie speaker on slow with spring-loaded reverb. That sound may be desirable in some quarters, but not for my pipe organ. So in working with these units, you find things that work very well, and other things that you will not use.
Mutations. In general, these work extremely well. For example, on the Positiv, my 8¢ pipe Holz Gedeckt combined with the Allen Sesquialtera is every bit as good as the real deal on the Swell. Mixtures. On my Swell I am using an Ahlborn-Galanti Plein Jeu and on the Great a Rodgers Fourniture. These are working out so well that I have decided I can forgo the real mixture I originally planned and thus save space.
Flue Doubles. Sometimes a 16' flue is nice to have on the manuals. The real estate such stops take up makes them impractical for a residence organ. The Allen 16¢ Gedeckt, for example, works very well when used in conjunction with real manual flutes.
On the Pedal I have a real 16' Subbass. On some small pipe organs, a single pipe rank is used for a Lieblich Gedeckt and a more powerful Subbass by varying the wind pressure supplied the pipes. That practice is often unsatisfactory. The digital units fill the Lieblich function well. In a Rodgers workshop, Hector Olivera mentioned that he was a bit tired of the overdone ca-chunk attack of 16' pedal stops on many “organ reform” instruments. So, if I use the Allen Bourdon on the Pedal, I get a tasteful ca-chunk. If I use the Rodgers, there is no ca-chunk. You move to the real Subbass when more is happening.
Celestes. I purchased a real Gemshorn and its corresponding Celeste. The Gemshorn is the most recently installed rank on my organ. Until I could get the Celeste installed, I decided to assign one of the Rodgers Celeste stops to that function. Even though by itself this Rodgers Celeste does not sound realistic in all areas of the compass, when combined with the real Gemshorn, the result is fabulous. The effect is sufficiently successful that I have decided to forgo the real Celeste, since I don’t have room for all the remaining ranks I want.
Observation. In the above paragraphs I have listed the functions in which the digital stops work very well. In these functions, the digital stops have the following things in common:
1. Real pipe ranks are combined with them giving the “breath of life.”
2. The digital stops have a pitch relationship to those pipes as well as a timbre relationship.
Generally when you are looking for a certain timbre from a digital stop and that stop is to be used alone, the result is often not as good. The same is often true when only digital stops are combined. Reeds. Today’s digital reeds are better than ever before. But that is not to say that they equal pipes. Nevertheless, they can be quite useful.
My organ contains four real reed ranks (Rankette, Dulzian, Krummhorn, and Trompette Musette). Note that they are all short-length resonator types. Suppose the middle section of Franck’s Pastorale is to be played. With the Cavaillé-Coll unit, the Trompette can be used. Not bad, but it sounds digital. Using the real Krummhorn gives a sound that is too “Baroqueish.” But when using the Trompette and Krummhorn together something wonderful happens. The Trompette seems to give the Krummhorn a full-length resonator sound, while the Krummhorn gives the Trompette the attack and other missing characteristics of a real reed stop.
In the Pedal I use two 32' digital reeds. These are the 32' Bombarde from the Ahlborn-Galanti and the 32' Bazuin from the Rodgers unit. As good as they are, they could be better. From the lesson learned above, I ordered a 32' octave for my Rankette from Germany. This short-length 32' stop gives the digital stops the real slap of the reed tongue that they were missing. The digital stops in turn give the effect of a full-length resonator.
Principals. The older analog electronic organs provided some sort of generic sound called Diapason. With these digital modules, the principals have character. The Ahlborn-Galanti Principal has a southern European flavor. The Cavaillé-Coll Montre gives something of the sound of slotted pipes. The Allen Principal has a northern European influence. The Ahlborn-Galanti Principal is used on my Positiv division whose pipe 8' flue is the Holz Gedeckt. This Principal adds some interesting foundation tone when added to the Positiv ensemble.
That said, however, the following also needs to be noted. Suppose the final measures of Bach’s “St. Anne” triple fugue in E-flat major are played. Combining the Great pipe stops of Principals 8', 4', and 2' with the Allen 16' Principal, the Rodgers IV Fourniture, and the Ahlborn-Galanti III Cymbale gives a very good sound. What happens though if digital 8', 4', and 2' Principals are substituted for the real ones? Then you move instantly from the real organ sound to a pale imitation. If at all possible, you want at least your 8' and 4' principals to be real!
Orchestral sounds. The Allen and Rodgers modules offer orchestral sounds in addition to organ stops. While in general I do not see great art served by a one-man imitation orchestra, a number of these sounds are very useful. The Allen orchestral flute, for example, with tremolo, combined with a real 8' Koppelfloete produces a most lovely flute solo. In addition to its many orchestral sounds, the Rodgers can alter the attack by way of “velocity sensing” keyboards. That feature I can’t comment on: with my 1927 Casavant console the note is either on or off.
I just ran out of notes! While the advertisements and user manuals don’t mention it, when you own the modules, you may soon discover that you run out of notes. One reason is explained in more detail in Jerome Markowitz’s book Triumphs & Trials of an Organ Builder. In brief, as the digital organ was being developed, it was “financially questionable.” A Rockwell engineer by the name of Watson reasoned that people have ten fingers and two feet. Hence there would only have to be 12 notes available for playing at any time, not 61. That reduction resulted in a great cost saving.
If you have played an Allen or Rodgers organ that supports these MIDI modules, you will notice that the MIDI stops do not couple. On my console, it all couples. To couple is the equivalent of playing more notes. On a three- or four-manual console, if a MIDI stop is selected on each manual and pedal, and all manuals are coupled to Great and Pedal, and we come to the end of a composition such as Vierne’s Carillon de Westminster, the MIDI modules are going to run out of notes. The first notes lost in overplaying are the lowest notes, so that 32' reed is lost precisely when needed most. So you use good organ sense and reduce the number of MIDI stops requested of a module until it can supply all the notes.
Perhaps because the Ahlborn-Galanti uses a MIDI channel per division rather than per stop, you can use all its stops coupled and still have eight simultaneous notes available before overplaying. A nice design feature is that notes are lost from the second note up when over played. So on this module that important bass note is always there.

Distinctive features

Allen went to some effort to make their module organist-friendly. On the LCD you see organ divisions (SW, GT, etc.), not MIDI channel numbers. You also see the name of the stop that is going to play when you activate the MIDI tab or knob. This intuitiveness is a good feature of the Allen for those of us who want organ terms and not MIDI terms. The Allen provides more organ stop samples than any other module. [Note: Allen has replaced the MDS Expander II with a newer model. These features apply to both.]
The Rodgers MX-200 provides almost as many organ samples as the Allen. With 170 orchestral samples it excels in this area. This unit is also most like MIDI sound modules obtainable outside the organ world. On a Rodgers organ, a sound may be assigned to a MIDI channel by a “Quick Key.” Set much like a capture combination action, for example, when middle C is pressed, the selected MIDI “stop” becomes a 16' Pommer. For a non-Rodgers organ, move the part knob to the MIDI channel to be changed, set the selector switch to “flue” and turn the value knob until the number “3” appears on the display. That gives the same 16' Pommer. Since only a number appears and not a stop name, I keep my owner’s manual at the organ at all times.
Using a very different approach, Ahlborn-Galanti gives you only 20 sampled organ stops. However, the Ahlborn-Galanti is like a 20-stop organ in a box. These stops may be combined and coupled in any way. Great flexibility is provided in adjusting the relative levels and scales of each of these stops. By using a MIDI channel per division rather than per stop, only three MIDI channels are used for the 20 stops, in contrast with the one stop to one MIDI channel of the others.
If an organ needs more stops, the Ahlborn-Galanti unit is a good choice to provide 20 more stops. On the other hand, if the basic specification is sufficient, and you occasionally want to augment with a more exotic stop (i.e., French Horn or Harp and Chimes, or a 11⁄7' Septieme, etc.), then an Allen or Rodgers unit is a good choice. And of course, you can do both and more as finances permit.

Conclusion

If I had it to do all over again, I would still do the same mix to get the advantages of each brand. One does have to use a little organ common sense to get the best effects. In the Principal section I mentioned for the closing of a big Bach fugue, I used the pipe Principals of 8', 4', and 2' along with the Allen 16' Principal, the Rodgers IV Fourniture, and the Ahlborn-Galanti III Cymbale. By spreading the load across the several modules, you gain the advantages of using more loudspeakers and amplified channels, giving a more realistic ensemble effect. These modules have given me the flexibility to play effectively the same music I used to play on the large pipe organs in graduate school. When properly adjusted to complement rather than blot out or compete with the pipes, these modules offer a lot of resources at a very reasonable price.

Related Content

Cover feature

Files
Default

A. E. Schlueter Pipe Organ
Company, Lithonia, Georgia
First United Methodist Church, Atlanta, Georgia

Atlanta First United Methodist Church was originally organized as Wesley Chapel in 1847, and has maintained a long tradition of excellence in worship. The present church was built in 1903, when Mr. Asa Candler purchased the former church site for the headquarters of Coca-Cola. After moving to the new location, the church changed its name to Atlanta First United Methodist Church. Many Methodist luminaries have served this congregation, including the venerable Pierce Harris.
The first pipe organ known to be installed in the church was a two-manual Roosevelt in 1885. When the present church was built, this instrument was moved. In 1919, the organ was re-actioned and rebuilt by Möller. Further changes occurred in 1953 when the organ was enlarged to 46 ranks by another firm. A new façade was built from new and existing pipes in a “pipe fence” array; while commanding in stature, the new façade did not pay homage to the architecture of the building and was poorly constructed. Fortunately, during the 1950s work, ten stops from the former Roosevelt instrument were retained; unaltered, they could be considered for inclusion in the new 2008 instrument. Over the succeeding years, the organ was rebuilt as sections failed and generally kept in working order. The organ provided the basic needs for service playing, but, quite simply, was too small for the space.
Jump forward to 2003 when senior pastor Rev. Wayne Johnson commissioned a feasibility task force to redefine the church’s mission and plan for future ministry. As with many downtown churches, the community around the church was displaced as office buildings replaced homes. Yet this church saw opportunity. The feasibility task force determined it needed to continue its television ministry, continue its education through the Candler School (founded at Atlanta FUMC, but now only affiliated through the denomination), and renovate and restore the church building. It was noted that the organ needed to be addressed as part of the building infrastructure. The task force engaged an architect to provide possibilities for the chancel renovation. J. Donald Land, director of music and organist, led the charge to consider the organ and its renovation or replacement.
A. E. Schlueter Pipe Organ Company was one of several firms interviewed for the project. We viewed this as a real opportunity to build an instrument of significance in our hometown. It is not often that an opportunity develops to build a “Magnum Opus” in the same city as a firm’s location. The Schlueter family decided that the building of this instrument was more important than simple financial gain. Trust that our pencils were very sharp because of this unique opportunity to create art. In our interview, we discussed with the committee the opportunity for an organ of multiple divisions and a wide palette of colors, in an organ case that would complement the church. Specific emphasis was placed on preserving the stewardship of the past. In our design, pipework from the two previous instruments was incorporated in the various departments of the organ.
Quality organbuilding is never the result of one individual but of the synergy of a team. In this respect, our firm was ably assisted by the Atlanta First United Methodist Church clergy, music staff, church staff, and feasibility task force. These individuals readily gave of their time and talents and provided invaluable assistance from the inception of the organ project to its installation and tonal finishing. Specifically we would like to recognize Dr. Bob Smith, chair of the feasibility task force, who was charged with the selection of the architect and organbuilder; J. Donald Land, director of music and organist; Wally Colly, church liaison; senior pastor Rev. Wayne Johnson, deceased, whose vision propelled this project forward even in his absence; and current senior pastor Dr. Jim Ellison.
As part of the building renovation, the choir loft was to be lowered (it was eight feet above the pulpit). This meant that the organ case would need to begin from a much lower plane than the actual organ chamber. We designed the lower case walls to begin below the main organ chassis and act as a reflective shell for the choir. The interior layout of the organ was designed to allow the choir to hear the organ without taking the full brunt of large registrations. In effect, the organ “blooms” just forward of the choir loft.
At the center point of the organ, the chamber is only nine feet deep, so modest cantilevers were designed into the organ case to grow the chamber space without creating a large shelf above the choir that would hamper hearing the organ. Visually, these forward pipe towers give the illusion of a more forward presence.
The engineering that developed would require the organ divisions to be stacked one on top of another. Often stacked organs rely on the division above to form the ceiling for the lower division. This is a problem because the sound speaks into windlines, reservoirs or schwimmers, organ actions, or other parts. It is also mechanically difficult to service the above division because of the sea of pipes located below it; this is often remedied by placing additional perch boards over the pipes, thus adding more impediments to sound reflection. Our solution was a careful design that built dedicated floors and ceilings in each division.
The layout of the organ finds the Swell, String and Choir divisions located on the bottom level. The Solo and Great divisions are located in the top level of the organ, with the Pedal in an open two-story chamber in the center of the case. The Great is enclosed with a ceiling that allows it to speak into the center of the case and to blend with the lower divisions in the chancel, rather than going completely over the musicians’ heads. This purposefully built chamber has proved very effective in coalescing the many divisions of the organ and eliminates geographic specificity of the individual organ stops. The rear of the church houses the Antiphonal, Antiphonal Pedal and Trompetteria divisions of the organ. The Antiphonal is situated at the same height as the Great organ, thus promoting tuning stability.
Because the church has a very active television ministry, there was a concern about the console being exposed and commanding behind the pulpit. A lift was designed that allows the console to be lowered to reduce its visual signature, and, when not needed for other church events, the console can be lowered down and rolled into a side parking location. The platform then can be raised to increase the available space in the chancel.
The console and organ case are constructed of quarter-sawn white oak. We made a conscious effort to incorporate elements of the church building into the console and organ case. Our design engineers, Howard Weaver and Robert Black, saw to it that arches, quatrefoils, and acanthus leaves became part of our vocabulary. It was clear that portions of the organ case would require large grille openings to provide maximum divisional egress into the room. We did not desire to use cloth grilles in the organ case. These impede airflow, are long-term maintenance issues, and affect sound. We designed wood grilles with an open quatrefoil pattern, which allow both the free passage of sound and airflow for tuning stability.
In designing the console, we were very concerned about the ergonomics of its layout. Those who have had the opportunity to sit at larger consoles are aware of their visual and physical challenges. To overcome some of the issues of actually reaching the playing surfaces, we foreshortened the organ sharps as the keys ascended from Manual I to Manual V. The keyboards are not sloped, but with subtle adjustment to the manual relationships even Manual V is comfortable to reach. A similar consideration was given to the pedalboard and expression shoes, which were designed using proportions normally found in our three-manual consoles. Special attention was given to the layout of the pistons, toe studs, drawknobs, and tilting tablets. The end result is that all of the controls can be used and seen without the leaning and craning about that occurs on a large console. It is a very comfortable console to play.
Some interesting facts about the organ:
• the organ contains 93 ranks with 5,360 pipes represented in nine divisions;
• in excess of 10,000 board feet of lumber were used to build this instrument;
• the organ contains over 10 miles of wiring for switching and control;
• the organ uses wind pressures that range from 3½" to 11";
• the main manual windchests are slider, with reeds on electro-pneumatic windchests;
• three divisions of the organ are located in the rear chambers;
• the Trompette en Chamade in the rear of the sanctuary is made from brass;
• the organ weighs over 44,000 lbs.;
• the front organ case stands over 43 feet tall;
• the instrument contains pipes of lead, tin, zinc, brass, and wood;
• the wind for the organ is created by three blowers;
• the organ is controlled with a five-manual console.
The tonal design of this organ was the result of many discussions. Prior to scaling this instrument, organist Don Land and I were able to visit a number of recent instruments built by our firm. Doing this in a short time frame was very helpful to determine tonally where we had gone and where we were going. Don brought in local organists Tom Alderman, David Stills and Richard Morris for their input to the specification and console layout. Tom Alderman worked as a consultant to Don. As a triumvirate, we worked through the myriad of decisions involving the final stoplist, drawknob layout, couplers, pistons, toe studs, and other controls. In the end, I recognize that I was offered a tremendous level of trust and generally an unfettered hand in the tonal design and scaling of the organ.
As the final specification became the math of scales, halving ratios, metal thickness, mouth widths, cut-ups, and languid bevels, I had the good fortune of having Daniel Angerstein and John Tanner to look over my notes. We have worked together on many projects over the years.
For tonal finishing, I was very ably assisted by a team led by Daniel Angerstein, with the assistance of John Tanner, Lee Hendricks, and Bud Taylor. I want to thank Daniel, John, Lee, and Bud for their input regarding division balance, dynamics, color, neutrality, fundament, harmonics, chiff (or lack of), treble ascendancy, and so many other factors. There must always be a final arbiter of design and direction and, in those instances where I followed a different path or tonal treatment, the civility for further discourse remained. I would like to personally single out Daniel Angerstein for his contribution to this project.
It is the daily give and take and discussion that allows art to flourish. It is a rule of organbuilding that you will not make everyone happy with your choices and decisions. The most important question is not “what will others think?” but “have I completed the work to the best of my ability and the charge or commission that I was given by my client to achieve their vision?” As a builder, it is important always to remember what the service role of the instrument will be, and that in the end, the instrument you are building is a tool for worship and is part of the church fabric. Just as your thumbprints are on the instrument, so must be the thumbprints of the church members.
On a project of this size, one challenge was keeping the organ in tune and making adjustments called for during tonal finishing. To make this happen, the voicers would work from 8 am to noon and then break. During lunch hour, members of our staff would take the opportunity to “punch-list” final items and adjustments. When the voicers returned, the room again would settle into the silence of single tones and “louder, softer, more flue, less flue,” etc. After the voicers left in the evening, the crew was again released to make adjustments until 9 pm, when the tuning crew arrived to perform the nightly vigil of preparing the organ for the voicers in the morning. Where stops required work beyond a reasonable ability to perform it in the chamber, we would prepare sample Cs and remove the stop for voicing in our shop. The completed stop would then be installed into the organ for final finishing. This ballet of work went on for weeks on end, and I wish to thank the dedicated members of my staff for the completion of this instrument and for the internal support provided from one staff member to another.
Special recognition must go to our craftsmen, Marc Conley and Robert Black, who were ever present in overseeing the design, engineering, and building of all of the myriad parts that constitute an instrument of this stature. They ensured that the final fit and finish met our standards of quality in engineering and execution. Marc served on the “sharp end of the stick” and worked untold hours at the church to see the project to its completion.
Tonally, this instrument reflects our desire to create organs that possess warmth and clarity. In this room, which promotes clarity of tone and gentle unforced voices, we found wonderful bass presence but the need for an ascendant treble. In the tonal design, all of the divisions of the organ are based on an 8' principal chorus. We differentiated these principal choruses, in addition to the vast array of flutes, strings, and mutations to allow the performance and support of many schools of repertoire. The organ was designed with numerous strings and celestes. It is an absolute joy to hear a transcription on the organ or the subtle undergirding of a choir. With the plethora of solo reeds in the organ, we were able to provide differing reed choruses in the various divisions and pure ensemble function for some of these departments. The organ has reeds designed after English, German, and French styles. The completed instrument pays homage to the important organbuilders and organbuilding styles of the past but is not a copy of any particular builder or style.
This instrument was designed to play a role in all musical styles of worship, from traditional to contemporary. To support the non-traditional role, the instrument is equipped with MIDI capability and a separate chamber audio system. This allows other tones not normally associated with the organ to be generated and controlled by the console. In this manner the organ can blend its voices with other sounds and participate in services that might normally exclude the pipe organ.
Early on, the client had discussed the inclusion of some digital voices in the organ. There was a desire for some stops in the organ that would be considered secondary or tertiary in nature and were the type of stops that might normally be drawn out of a MIDI sound module. They did desire that these stops be voiceable and individually tunable, which specifically excluded MIDI voices. In our interview, we were asked if we would consider working with Walker Technical Company in the installation of these voices. Even though the majority of our experience had been limited to 32' and 16' extensions and percussions, we were aware of the high quality of engineering and sound quality provided by Walker.
As we considered the inclusion of digital voices, the primary question was how? It is probable that, in consultation with the client, we could have left prepared-for stops in the console, to be completed by a third party without our direct involvement. In effect, the stops could have been added in a “don’t ask, don’t tell” fashion, which we considered unpalatable. I am well aware that this method of installing digital stops has allowed some firms to remain “intellectually honest,” but I consider this method to be, at best, morally untenable. If you are providing for additions to the organ in the console and relays, which forces a digital solution because the chamber, winding system, or structure could never accommodate the proposed installations, you cannot pretend you simply did not know, and worse, you have ceded part of your tonal vision to a third party. We considered that if this were the desire of the client, we would work to ensure as seamless an integration of the adjunct stops as possible and to consult on the stops and their voicing.
One fundamental concern with the inclusion of digital stops is where does one start and where does one end once the genie is “out of the bottle.” Our consideration was simple—even though there was a possibility to use digital voices, we strongly desired the organ to be able to stand on its own with the speakers and amps unplugged. There were instances where it would have been much easier to leave out that additional 16' register of pipes in lieu of a digital voice. I am proud to say we resisted this temptation and made organbuilder choices.
Bob Walker worked directly with our firm and Daniel Angerstein in voicing and tuning these stops, and we were very pleased with the final results. Where we desired the voicing and balances to be altered and changed, Mr. Walker was accommodating and worked to achieve a result in keeping with our overarching tonal philosophy for this instrument. The digital stops are as seamless as we had hoped, and the stops contribute around the periphery, as planned by the client, without overtly placing their presence on the stoplist. To the critics, I would say that our firm approached this instrument with integrity of design, and you can indeed play the organ successfully without any digital stop. There are now 93 ranks of wind-blown pipes where there were 46 ranks, and we have completed the tonal vision of our clients in a unified, cohesive manner.
In the end, how do we view this project? In truth, we are still overwhelmed by the opportunity presented to us and the fine work completed by our staff. It is as if we have been so close to the project it is difficult to see what we have done. Analytically, we are aware that the instrument is stunning to hear and see, and yet it will take time to back away far enough from the façade, console, and thousands of pipes to see and hear what others already know of this instrument.
Personally, I do know this—our firm was gifted with an opportunity to build an instrument that we could only have dreamed of at the beginning of our career. We are grateful for the trust placed in us by Atlanta First United Methodist Church and so very fortunate to have the talented and skilled staff that we enjoy. Our tonal philosophy is to “build instruments that have warmth not at the expense of clarity and clarity not at the expense of warmth.” We are thankful to have been given such a grand canvas upon which to express our tonal ideals.
In summation, I would like to thank my father and our company founder, Arthur E. Schlueter, Jr. He is the foundation upon which our company was built and continues to thrive. His continuing role as artist, mentor, and president provides the ongoing oversight of our firm. I am humbly proud to call him both Boss and Dad, as we together work to build instruments for worship.
—Arthur E. Schlueter III

A.E. Schlueter Pipe Organ Company wishes to thank its staff including:
Arthur E. Schlueter Jr., president
Arthur E. Schlueter III, vice president/tonal and artistic direction
John Tanner, vice president of production/tonal finisher
Howard Weaver, senior design engineer
Rob Black, master cabinet-maker/organ engineer
Marc Conley, production supervisor
Bud Taylor, assistant production supervisor
Shan Dalton, office manager
Bob Parris, executive assistant
Barbara Sedlacek, office support
Mike Norris, woodshop foreman
Tony DiLeo, console builder
Bob Black, BSME, mechanical engineer
Joe Sedlacek, console wiring
Jeffery Chilcutt, CAD operator
Michael DeSimone, leathering and assembly
Dustin Carlisle, organ assembly
Sam Polk, organ assembly, tuning assistant
Kelvin Cheatham, organ assembly
Wilson Luna, assembly and wiring
Norma Renteria, leathering, assembly and wiring
Rockshawn Owens, organ assembly
Ruth Lopez, leathering and assembly
Kevin Cartwright, tuning & tonal assistant
Bob Weaver, leathering, assembly, tuning and service
Othel Liles, electrical engineer
Patty Conley, relay wiring
Herb Ridgely, Jr., sales & support
Mike Ray, electronics technician
David Stills, sales & support
Rick Stewart, sales & support
Dave Kocsis, program manager

The cover photo is by Michael Mitchell of Creative Expressions. Other photo credits as indicated.

GREAT (Manual II, unenclosed)
32' Contre Bourdon (Pedal)
16' Bourdon (Pedal)
16' Violone 73 pipes
8' First Open Diapason 61 pipes
8' Second Open Diapason 61 pipes
8' Violone (ext)
8' Harmonic Flute 49 pipes
(common bass from Rohrflote)
8' Rohrflote 73 pipes
5-1/3' Gross Quint 61 notes+
4' Octave 61 pipes
4' Prestant 61 pipes
4' Rohr Flute (ext)
3-1/5' Gross Tierce 61 notes+
2-2/3' Twelfth 61 pipes
2' Super Octave 61 pipes
2' Waldflote 61 pipes
2-2/3' Cornet III 183 notes+
1-1/3' Fourniture V 305 pipes
2/3' Scharf IV 244 pipes
16' Contra Trompete 85 notes+
8' Trompete (ext)
4' Clarion (ext)
16' Trombone (Solo)
8' Tromba (Solo)
8' Festival Trumpet (Solo)
Tremulant
Chimes (enclosed with Solo)
Cymbalstern
Great to Great 4'
MIDI on Great A
MIDI on Great B

SWELL (Manual III, enclosed)
16' Lieblich Gedeckt 73 pipes
8' Violin Diapason 61 pipes
8' Traverse Flute 61 notes+
8' Stopped Flute (ext)
8' Viola de Gambe 61 pipes
8' Viola Celeste 49 pipes
8' Viol Dolce Celeste II 122 notes+
8' Flute Celeste II 122 notes+
4' Prestant 61 pipes
4' Harmonic Flute 61 pipes
4' Unda Maris Celeste II 122 notes+
2-2/3' Nazard 61 pipes
2' Flageolet 61 pipes
1-3/5' Tierce 61 pipes
2' Plein Jeu Grave IV–VI 330 pipes
2/3' Plein Jeu Acuta III–IV 208 pipes
16' Bombarde 61 notes+
16' Contre Fagotto 85 pipes
8' Trompette 73 pipes
8' Oboe 61 notes+
8' Vox Humana 61 notes+
4' Clarion (ext 8')
4' Fagotto Clarion (ext 16') 24 pipes
Tremulant
Swell to Swell 16'
Swell Unison Off
Swell to Swell 4'
MIDI on Swell A
MIDI on Swell B

STRING ORGAN
(Manual III, enclosed with Swell)
16' Viol Celeste II 122 notes+
8' Viol d’Orchestra 61 notes+
8' Viol Celeste Sharp 61 notes+
8' Viol Celeste Flat 61 notes+
8' Dulcet Celeste II 122 notes+
4' Violina Celeste II 122 notes+
4' Dulcet Celeste II 122 notes+
8' Vox Mystique 61 notes+
Tremulant
String Unison Off

CHOIR (Manual I, enclosed)
16' Quintaton 61 notes+
8' Weit Principal 61 pipes
8' Voce Umana 61 notes+
8' Bourdon 61 pipes
8' Gemshorn 61 pipes
8' Gemshorn Celeste 49 pipes
8' Unda Maris II 122 notes+
4' Principal 61 pipes
4' Nachthorn 61 pipes
2-2/3' Nasat 61 pipes
2' Wald Flute 61 pipes
1-1/7' Septieme 61 notes+
1-3/5' Terz 61 pipes
1-1/3/ Quint 61 pipes
1' Sifflote 61 pipes
8/9' None 61 notes+
2' Choral Mixture IV 244 pipes
1/2' Terz-Cymbal III–IV 208 pipes
16' Corno di Bassetto 61 notes+
8' Clarinet 61 pipes
16' Dulzian 61 notes+
8' Holzregal 61 notes+
4' Rohr Schalmei 61 notes+
8' Tromba (Solo)
8' Harp 73 notes+
4' Celesta (ext)
Tremulant
Choir to Choir 16'
Choir Unison Off
Choir to Choir 4'
MIDI on Choir/Pos A
MIDI on Choir/Pos B

ANTIPHONAL (Manual I, enclosed)
16' Bourdon 97 pipes
8' Principal 61 notes+
8' Gamba 61 pipes
8' Salicional 61 pipes
8' Voix Celeste 49 pipes
8' Gedeckt (ext)
8' Flute Celeste II 122 pipes
4' Principal 61 pipes
4' Harmonic Flute 61 pipes
2-2/3' Nazard (ext 16')
2' Blockflote (ext 16')
2' Mixture IV 244 pipes
16' Contre Trumpet 61 notes+
8' Harmonic Trumpet 61 pipes
8' Flugel Horn 61 pipes
Tremulant
Antiphonal to Antiphonal 16'
Antiphonal Unison Off
Antiphonal to Antiphonal 4'

SOLO (Manual IV, enclosed)
8' Major Open Diapason 61 notes+
8' Violincello 61 pipes
8' Violincello Celeste 49 pipes
8' Doppelflote 61 pipes
8' Flauto Mirabilis 61 notes+
4' Claribel Flute 61 pipes
4' Eclat V 305 notes+
8' Tromba 61 pipes
8' English Horn 61 pipes
8' Harmonic Trumpet 61 pipes
8' Festival Trumpet 61 notes+
8' French Horn 61 notes+
16' Tuba Magna 73 notes+
8' Tuba Mirabilis (ext 16')+
4' Tuba Clarion (ext 16')+
Tremulant
Solo to Solo 16'
Solo Unison Off
Solo to Solo 4'
MIDI on Solo A
MIDI on Solo B

TROMPETTERIA
(Manual V, enclosed with Antiphonal in gallery)

8' Tuba Mirabilis (Solo)
16' State Trumpet 85 notes+
8' State Trumpet (ext)+
4' State Trumpet (ext)+
2' Tierce Mixture V 305 notes+
16' Trompette en Chamade TC
8' Trompette en Chamade 61 pipes
4' Trompette en Chamade 49 notes

PEDAL (unenclosed)
32' Contre Diapason 32 notes+
32' Contre Bourdon 32 notes+
32' Contre Violone 32 notes+
16' Principal 44 pipes
16' Wood Open 32 notes+
16' Violone (Great)
16' Bourdon 44 pipes
16' Lieblich Gedeckt (Swell)
16' Quintaton (Choir)
8' Octave (ext 16')
8' Violone (Great)
8' Bourdon (ext 16')
8' Gedeckt (Swell)
4' Choralbass 32 pipes
4' Nachthorn 32 pipes
4' Rohr Flute (Great)
2' Octavin 32 pipes
2-2/3' Mixture V 160 pipes
32' Contre Bombarde 32 notes+
32' Contre Basson 32 notes+
16' Ophicleide 32 notes+
16' Trombone 12 pipes
16' Bombarde (Swell)
16' Contre Fagotto (Swell)
16' Corno di Bassetto (Choir)
8' Festival Trumpet (Solo)
8' Bombarde (ext 32')
8' Tromba (Solo)
4' Clarion (Solo)
4' Clarinet (Choir)
MIDI on Pedal A
MIDI on Pedal B

ANTIPHONAL PEDAL (enclosed)
32' Echo Bourdon 32 notes+
16' Principal 32 notes+
16' Bourdon (Antiphonal)
8' Octave 32 notes+
8' Gedeckt (Antiphonal)
16' Contre Trompette (Antiphonal)

+ Walker stops

Coupler Rail
Great to Pedal 8, 4
Swell to Pedal 8, 4
Choir to Pedal 8, 4
String to Pedal 8
Antiphonal to Pedal 8
Trompetteria to Pedal 8
Solo on Pedal (couplers follow through)
Swell to Great 16, 8, 4
Choir to Great 16, 8, 4
String to Great 8
Antiphonal to Great 16, 8, 4
Trompetteria to Great 8
Solo on Great (couplers follow through)
Swell to Choir 16, 8, 4
String to Choir 8
Antiphonal to Choir 8
Trompetteria to Choir 8
Solo on Choir (couplers follow through)
Antiphonal to Swell 16, 8, 4
Trompetteria to Swell, 8
String on Solo 8 (couplers follow through)
Trompetteria to Solo 8

In the wind . . .

John Bishop

John Bishop is executive director of the Organ Clearing House

Default

Decisions, decisions
We are rebuilding an organ. It’s about 90 years old. It has electro-pneumatic action. The main manual windchests have ventil stop action. It has three manuals and 33 ranks. It was built as the “downstairs” organ in a large Roman Catholic church—a common layout for the quintessential huge Catholic parish that allows Masses to be celebrated concurrently. In our work at the Organ Clearing House we’ve been involved in the relocation of quite of few “downstairs” organs as parish leaders find it attractive and useful to redevelop those huge spaces into reception rooms, classrooms, offices, rehearsal space, and of course to create spaces that can generate rental income.
The organ has been purchased by a church that has a strong liturgical tradition and an elaborate music program, located in a big city. Over the course of a year or so, the church’s organist and I developed a plan that includes adding six ranks of pipes and a couple 16′ extensions to existing ranks. Originally the Great and Swell divisions each had two windchests, one for lower pressure, one for higher. The high-pressure Great chest will become the Solo division playable independently on Manuals I and II. Because we will be able to incorporate some good-quality 16′ ranks left from the church’s previous organ, our 39-rank specification will include eight 16′ ranks including three open ranks, two reeds, and three stopped wood ranks. There will be seven ranks of reeds, two on high pressure. The only reed not under expression will be the Pedal Bombarde.
In the last few weeks I have been designing the technical specifications of the project, working with suppliers and our client to make decisions about which materials and which equipment will make up this organ. We have faced quite a few complicated technical choices, and the nature of this project means that there are some philosophical questions to answer.

Restore, rebuild, renovate
It’s easy to say we’re restoring an organ—but I think the word restore is overused. I prefer to use that word literally. When we restore an organ to its original condition we don’t add or subtract any pipes. We don’t introduce modern materials. We don’t even change the color of the felt around the drawknobs. It’s impossible to restore an organ if you’re using a solid-state combination action (unless the organ originally had an identical system!). Using this definition, I’d say there are very few real pipe organ restorations completed in the world today. The argument can be taken so far as to say that a restoration cannot include new trackers (even if the old ones are hopelessly broken)—in other words, literally restoring an organ can result in an instrument that cannot be played.
The word rebuild when used to describe an organ project is much more general and not very limiting—a “rebuild” of a pipe organ is a philosophical free-for-all. We buy or make materials and parts that will “do the job.” We want the organ to perform well, that all the notes work correctly and the tuning is stable. We want the job to be both economical for the client and profitable for the organbuilder, a seemingly oxymoronic goal. But we are not necessarily making an artistic statement.
I prefer the word renovate. It comes from the Latin root “nova” which simply means new. My dictionary gives the word novation as a legal term describing the substitution of a new obligation for an old one—I’m no attorney, but I presume that describes a contract that has been renegotiated or an agreement that has been cancelled and replaced by a new one. In organbuilding, I use the word renovation to describe a project that focuses philosophically on the work and intentions of the original organ builder. It allows for the addition of ranks, especially if the original specification was obviously limited by constraints of space or budget. It allows us to modify an instrument to better suit a new home. And it forces us to make myriad decisions with the ethic of the original instrument in the forefront of our minds.
Our current project is a long way from a restoration. We have chosen to replace large and important components. We are adding several ranks. We are including a sophisticated combination action. We expect that the result will be an instrument with plenty of pizzazz, extensive expressive capabilities, and a wide range of tone color. There will certainly be plenty of bass and fundamental tone. We intend for the console to be welcoming to the player, expecting that the organ will be played by some of our most accomplished organists.
In this and other professional publications, we are accustomed to reading descriptions of completed projects. As I work through this long list of decisions, I thought it would be fun (and useful to my process) to discuss them in broad terms as the project begins.

Adding ranks
If this instrument was originally a “downstairs” organ, I think it’s fair to say that it was a secondary instrument. In fact, the church it came from has a magnificent and much larger organ in the main sanctuary. Our instrument was not decked out with some of the fancy stops that are appropriate, even required for the sort of use it will get in its new home. The voices we’re adding include French Horn, Tuba, and Harmonic Flute. We’re adding a second chorus mixture (there was only one). We’re adding a second Celeste (there was only one). We’re adding 16′ extensions to a soft string and an Oboe, as well as a couple new independent sixteen-footers. Most of these additions are being planned based on the scaling of the rest of the organ. And a couple of the fancier additions will be based on the work of a different organbuilder whose specialty stops are especially prized.
I believe that many additions are made to pipe organs based on nomenclature instead of tone color. If the last organ you played regularly had a Clarion in the Swell, the next one needs one too. I think it’s important to plan additions with your ears rather than your drawknob-pulling fingers. Some specialty stops stand out—an organ with a good French Horn can do some things that other organs can’t. But describing an organ by reciting its stoplist does not tell me what the organ sounds like. An organ without a Clarion 4′ can still be a wonderful organ.
The additions we’ve chosen come from many long conversations concerning what we hope the organ will be able to do. And these additions are intended to transform the instrument from its original secondary character to one suited for all phases of high liturgy and the performance of the organ repertory.

Windchests
Ventil stop action is one in which each rank is mounted over a discrete stop channel. When the stop is off, the organ’s air pressure is not present in the channel. The stop knob controls a large pneumatic valve that allows air pressure to rush in to fill the channel. This is one of the earliest types of pneumatic stop action, invented to allow for the transition away from the slider chests of the nineteenth century. Both electro-pneumatic and tubular-pneumatic organs were equipped with ventil windchests. When they are in perfect condition and perfectly adjusted, they operate quickly and efficiently, but there are some inherent problems.
The nature of the large valve (ventil is the word for a pneumatic valve) means that there’s a limit to how fast the air pressure can enter the stop channel when the stop is turned on, and a limit to how fast the air pressure can exhaust, or leave the channel when the stop is turned off. To put it simply, sometimes a ventil stop action is slow. It’s especially noticeable when you turn off a stop while holding a note or a chord—you can clearly hear the tone sag as the air leaves the channel. Pitman chests introduced the first electro-pneumatic stop action in which the stops are controlled at the scale of the individual note. Turn on a stop, air pressure enters a channel in the Pitman rail, the row of 61 Pitman valves move, and each note is turned on individually and instantly.
Another disadvantage of ventil stop action comes from the fact that electro-pneumatic actions work by exhausting. A note pouch at rest (not being played) has organ air pressure both inside and out. Play the note and the interior of the pouch is exposed to atmosphere. The air pressure surrounding the pouch collapses it, carrying the valve away from the toe hole. In a Pitman chest, a hole in a pouch means a dead note, annoying but not disruptive. In a ventil chest, a hole in a pouch means a cipher, annoying and disruptive. The cause of the cipher is air pressure exhausting from the interior of pouches of stops that are on into the stop channels of stops that are off—the exhausting happens through the holes in pouch leather of stops that are off. It’s easy to diagnose because the cipher will go away when you turn on the stop. In other words, a hole in a pouch in the Octave 4′ will allow the pouches of the other stops to exhaust through it into its empty stop channel. Turn on the Octave 4′ and the Principal 8′ can no longer exhaust that way so the cipher goes away—but the note in the Octave is dead!
With the revival of interest in Romantic music, cathedral-style accompanying, and symphonic organ playing, instant stop action is critical. We have decided to convert the stop action in our instrument from ventil to Pitman.

Console
The console is the place where we’ve faced the most choices. In the early twentieth century, the great heyday of organbuilding, each builder had specific and unique console designs. Each manufactured their own drawknob mechanisms, their own keyboards, their own piston buttons. Each had a particular way of laying out stopjambs. An experienced organist could be led blindfolded to a console and would be able to identify the organbuilder in a few seconds.
Most of those organs were built by companies with dozens or even hundreds of workers. A factory would house independent departments for consoles, windchests, wood pipes, metal pipes, casework, structures, and wind systems. Components were built all around the factory and brought together in an erecting room where the organ was assembled and tested before it was shipped. Today, most organ workshops employ only a few people. There are hundreds of shops with two or three workers, a small number of dozens of shops with between ten and twenty workers, and a very few with more than twenty.
When building small tracker-action organs, it’s not difficult to retain a philosophy of making everything in one workshop. Without distraction, two or three craftsmen can build a ten- or fifteen-stop organ in a year or so, making the keyboards, pipes, action, case—everything from “scratch” and by hand. When building large electro-pneumatic organs, that’s pretty much impossible. Too many of the components must be mass-produced using metal, too many expected functions of such an organ (like combination actions) are so complicated to build by hand, that it’s simply not economical to do it with a “build everything here” philosophy.
That means that a few organ-supply companies provide keyboards, drawknobs, combination actions, piston rails, and other console controls and appointments for the entire industry. It’s something of a homogenization of the trade—just like you buy the same books in a Barnes & Noble store in New York or in Topeka, and a McDonald’s hamburger tastes the same in Fairbanks as in Miami, so the drawknob action is identical in the consoles built by dozens of different firms.
The upside of this conundrum is that the companies that produce these specialized and rarified controls (you can’t go to Home Depot to buy a drawknob motor) have the time and ability to perfect their products. So while the drawknobs we will install in the console for this organ will be the same as those on many organs in that city, they are excellent units with a sturdy old-style toggle feel, beautifully engraved knob faces, and of course, compatibility with today’s sophisticated solid-state combination actions.
This week we placed the orders for new drawknobs identical to the original (we’re expanding from 33 to 60 knobs), drawknob motors and tilting tablets for couplers, new keyslips with many more pistons than the original layout, and engraved labels for indicator lights and the divisions of stops and pistons.

Combination action
It used to be “ka-chunk” or “ka-thump.” One of the factors of that blindfolded test would be pushing a piston. Compare in your mind’s ear the resulting sound in a Skinner console with that of an Austin. If you’re familiar with both builders you know exactly what I mean. The sounds are as distinctly different as are the diapasons of each builder. In many renovation projects, a solid-state combination action is installed to operate the original electro-pneumatic drawknobs—a nice way to preserve some of the original ethic of an organ. But when the specification of an organ is changed as part of a renovation project, it’s not easy to adapt the original knob mechanisms by adding knobs. In fact, it’s typical for there to be plenty of space in a chamber to add all kinds of new ranks, but no way to add the controls to the console without starting over. It’s no good to add a stop to the organ when you can’t include the knob in the combination action.
There are a half-dozen firms that produce excellent solid-state controls for pipe organs. They each have distinct methods, the equipment they produce is consistent, and each different brand or model combination action has myriad features unheard of a generation ago. Programmable crescendos, piston sequencers, manual transfers, expression couplers, melody couplers, pizzicato basses, the list seems endless. Multi-level systems have been with us for long enough that we’re no longer surprised by hundreds of levels of memory.
But when we’re renovating a console, we face the challenge of including lots of new controls for all those, dare I say, gimmicky functions. We build drawers under the keytables so the flashing and blinking lights and readouts are not part of our music-making, and the organists complain that they whack their knees when they get on the bench. We add “up and down” pistons to control memory levels and sequencers. We have bar-graph LED indicators for expression pedals. And we even install USB ports so software upgrades and MIDI sequencing can be accomplished easily. I suppose the next step will be to update a combination action by beaming from your iPhone. It’s easy to produce a console that looks like a science lab or an aerospace cockpit, and it’s just as easy to fall into thinking that the lights, buttons, and switches are more important than the sound of the organ.
It’s our choice to keep the “look” of the console as close as possible to its original design—it is a very handsome console. But keeping that in mind, you will want some modern gizmos close at hand.
There are lots more things to think about. Are we holding up bass pipes with soldered hooks or with twill-tape tied in knots? Are we making soldered galvanized windlines or using PVC pipe or flexible rubber hoses? It’s relatively easy to make a list of all the right choices for the renovation of a fine organ built by a great organbuilder. But the challenge is to retain the musical and artistic qualities of the organ, renovate an organ using the same level of craftsmanship as the original builder and produce an instrument that thrills all who make music and worship with it, while keeping in mind that the future of the pipe organ is ensured by the appropriate balance between artistry and expense. Thoughtful organbuilders face that question every time they pick up a tool.

A Brief for the Symphonic Organ (Part Two)

Part two of two

Jack M. Bethards
Default

II.

The balance of this article will explore some of the methods used by Schoenstein in designing symphonic organs.

Tonal Variety

In planning a symphonic organ, no tone color that might be useful is excluded from consideration, and if something new seems appropriate we will develop it. We see no problem in combining individual sounds from French, German, English and American traditions of different periods in one instrument. This may seem like a dangerous approach, and it is . . . for those who must follow only established rules. If, on the other hand, a designer has in mind a well-formed image of the tonal architecture and its end result, the freedom to include elements of rare beauty handed down to us by the great builders of the past can open new avenues of creativity. This approach is only successful when applied with the strictest of discipline. Anything that does not blend and pull its weight in the ensemble or serve in a variety of solo or accompaniment roles should not be included. Collecting multiple elements of different traditions in an attempt to combine two or more repertoire-specific instruments into one is usually disastrous. The once-popular procedure of building an organ with a German Great and Positiv and French Swell or adding a romantic Solo to a neo-classic design are ideas that have, fortunately, lost their appeal. The goal should be to create an ensemble that has integrity in its own right and is able to acquit itself musically in a number of different styles with such conviction that there is no need to claim “authenticity.”

An equally important rule of design is to avoid making an instrument any larger than necessary or practical. No organ should have more stops than it needs to get its musical job done. No organ should be so large that it becomes unseviceable or acoustically chokes on its own bulk. When too much organ is squeezed into too little space and/or spread hither and yon, maintenance and tuning problems are sure to result. An organ should be of adequate size to be considered symphonic, but that size is much smaller than one might think. The smallest organ we have made that can qualify is the 15-voice, 17-rank instrument in the chapel of the University of St. Thomas, Houston, Texas (see stoplist). Certainly 40 to 50 voices provide ample opportunity for design freedom and 60 to 70 voices are all that should be required even for very big buildings. An example of our approach in a large symphonic plan is at First Plymouth Congregational Church in Lincoln, Nebraska (see stoplist). Note that this instrument has 73 voices if the separate gallery organ is not included.

Our stoplists show how we combine various tone colors, but a few explanatory notes may be in order. When combining individual stops into groups, we think of them in these categories: first, traditional choruses of diapasons and reeds; second, stops of moderate power from all tonal families serving in both accompanimental (manual and pedal) and in solo roles; third, ethereal stops--the extremely soft and delicate tones of the flute, string or hybrid type; fourth, bass stops of exceptional depth and power; and fifth, heroic solo stops. Some stops, of course, can fit into more than one of these categories but the classification is useful in reviewing whether or not the organ has all of the tonal characteristics common to a good symphonic ensemble.

Since the diapason is unique to the organ and the tone most often used, we seek to provide several (with appropriate chorus development), each of distinct character, on organs of even modest size. They vary not only in scale, but in mouth width, slotting, etc. We like to include stops of the echo diapason class (dulcianas, salicionals, etc.) as well. During the organ reform movement, open flutes, particularly at 8’ pitch, were not in vogue. We tend to include more open than stopped flutes. Stops of genuine string tone have not been popular either. This is a sad omission and certainly an organ without them cannot be considered symphonic. We like to include a family of strings and celestes from very narrow to very broad scale, all with true string quality rather than the geigen principal type that served as string tone in neo-classic organs. We try to include at least one of each of the color reeds (Clarinet, Oboe, Vox Humana and, where possible, horns, and specialty stops such as the Orchestral Oboe) as well as a complete chorus of trumpet tone (in large schemes, those of both closed and open shallot type). To broaden both dynamic and color ranges, very soft flue stops (often of the hybrid, tapered types) and bold solo stops (usually of the trumpet or tromba class) are important. In small schemes these effects can be had with stops doing double duty through effective expression.

We have developed several new voices. Some of these are variations on long established styles such as our Celestiana, which is a very narrow scale, quarter-tapered hybrid of clear but very soft flute tone; the Cor Seraphique with its Vox Angelique celeste is a larger scale version. Our Corno Dolce and Flute Celeste are brighter renditions of the E. M. Skinner Flauto Dolce and Flute Celeste. We find this bright character more generally useful in smaller instruments. The Voix Sérénissime is a small scale string of extremely keen intonation but of soft volume. The Silver Flute is a narrow-mouth, non-harmonic version of our large Harmonic Flute. It may be thought of as a metal Claribel Flute. 

The Symphonic Flute is a new development, also called Bœhm Flute, incorporating many different pipe constructions throughout its compass to achieve an interesting effect found in the orchestra’s family of transverse flutes. The flute of the symphony orchestra is bright and reed-like in its lower register with a full, increasingly powerful and pure, bell-like treble. These tone qualities are carried downward to the alto, bass and contra-bass flutes and upward to the piccolo. The Symphonic Flute was realized after extensive studies with flute players and manufacturers, as well as a careful review of Bœhm’s treatise. The tonal character is achieved, as in real flutes, by maintaining nearly the same diameter from bass to treble. The diameter progresses unevenly to achieve particular effects, but it does not reach the half-way point until the 48th pipe. The pipes in the bass therefore are of string scale progressing through principal, moderate flute, a wide flute, to very wide flute at the top. Pipe construction is of five varieties: slotted; non-slotted; harmonic; double mouth harmonic; and double mouth, double harmonic. This new solo color for the organ is both powerful and beautiful.

We employ high wind pressure for beauty, precision, or smoothness of tone where it is required. Solo flutes and strings and all closed shallot chorus reeds certainly have benefited from this treatment. Loudness can be achieved by other means, but carrying power without harshness is most perfectly achieved through heavy pressure.

A final note on tone is perhaps the most important point in this essay: Beauty of tone trumps all else in organ design. Beauty is perhaps too simple a term. Organ stops of great character can be quite bold and assertive, colorful and mysterious, languid and wistful. They are all forms of beauty to my ear. The secret is committed voicing. By that I mean making tone that has something to say, not simply playing it safe with blandness. Anyone who studies organ tone knows what I mean. Great voicing imparts something extra to energize a tone and make it appealing. A single diapason of beautiful quality will outplay a 100-rank organ that is all bluster and blandness. An organ may look symphonic on paper, but if the character of tone is not beautiful, it cannot qualify. An organ of any type with beautiful tone will surpass a poor symphonic one. However, if beauty of tone can be combined with all of the flexibility promised in the symphonic ideal, the result can be sublime.

Balance

To achieve balance there must be a center of gravity and in the symphonic organ it is at 8’ in the manuals. Each division should lay its foundation at the 8’ level. This, after all, is where the music is written. In our symphonic concept, upperwork is considered a coloring agent, a way of adding a distinctive character to the 8’ line. Therefore, in chorus design, as a general rule, scales decrease as pitch levels increase. Where we have the luxury of two mixture stops in a division, we vary them in color and dynamic rather than pitch: for example, one at mf and another at ff or one with a tierce and one without. Sometimes the mixture is enclosed separately. We avoid flutiness and overemphasis of off-unison pitches in upperwork; pure, clear diapason tone is the goal. Most 8’ stops, particularly those that must blend with related upperwork, have high harmonic content, a satisfying brilliance in their own right. Eight-foot stops are also regulated in a treble-ascendant fashion to emphasize the melody line; pipes become progressively slightly louder as they ascend the compass from the middle of the keyboard.

Horizontal balance is equally important and we believe that all of the manual divisions should be of adequate power to balance one another; the Swell and Great approximately equal and the Choir only slightly below. Reeds and flues should be equally balanced, but in certain acoustical situations the reeds should dominate. In dealing with chambers or in rooms of dry acoustic, open flute, string, and chorus reed tone are far more effective in producing tone of noble and powerful character than is diapason upperwork.

Clarity

One only has to see the density of a Reger, Widor, or Elgar score to realize that clarity is vitally important in romantic and modern music--as much as in early music. Many organs just present great blocks of sound. This may be titillating, but it is not music making. The notes must be heard if the intent is to be expressed. Most of the burden for clarity rests on the organist, who must judge his instrument and his acoustic; but the organ must not stand in his way. Clarity is achieved in an organ by many means including steady wind, precise action, voicing for prompt, clean attack and clear tone that is steady and free of irritating chiff, wild harmonics, and white noise.

Enclosure

There are vital qualities of freshness and presence associated with unenclosed pipework, but we believe that having pipes unenclosed is a luxury that can only be afforded in a scheme that also has a full range of resources, including Pedal stops, enclosed in at least two boxes. In smaller jobs the entire organ should be under expression, although sometimes circumstances dictate otherwise, for example where the Great must be placed forward of the Swell. In very large jobs it is good to have tones of similar character enclosed and unenclosed so that each class of tone can be used in its full range of expressive beauty. The best enclosure is masonry. Hollow brick faced with cement is the preferred construction and this points out the advantage of organ chambers in some situations. If an organ is primarily used for accompaniment where dynamic control and atmospheric, ethereal effects are of utmost importance, a properly designed and located chamber is ideal. An enchambered organ is as different from an encased free-standing one as a piano is from a harpsichord. Each has its advantages and each must be designed differently. The enchambered organ requires a stoplist emphasizing stops scaled and voiced for exceptional projection and carrying power, higher wind pressure, and a layout taking maximum advantage of the opening and preventing echoes within the chamber. In recent years chambers have been thoughtlessly despised. It is time to recognize their value as a means of increasing the range of musical options offered by the organ.

Dynamic Control

The symphonic organ must provide the organist with three distinct types of dynamic control: continuous, discrete-terraced, and sudden. These are all qualities common to the symphony orchestra, but often illusive on the organ. The continuous dynamic is achieved on the organ only through the use of the expression box and shades. A good expression box when fully open should not rob the pipes of clear projection and presence to any great degree, but when closed should reduce loudness from at least ff to p. To achieve this, a box must be reasonably sound proof with adequate density to control leakage of bass and must be well sealed when closed: Gaps are anathema to good expression box control. The shades cannot be too thick because their bulk will not permit a full use of the opening. Shades should be able to open 90 degrees. They must be fast acting and silent. Achieving smooth, continuous expression control is one of the greatest challenges in organ building.

To achieve a continuous dynamic range from fff to ppp we have developed a system of double expression, placing a box within a box. (See drawing.) The inner box is placed at the rear of the outer (main) box so that there is a large air space between the two sets of shades. When both sets of shades are closed, the space contained between them provides a very effective sound trap. We place the softest and most powerful sounds inside the inner box of the division. For example, a pair of ethereal strings and the Vox Humana; the high pressure chorus reeds and a mixture. A balanced expression pedal is provided at the console for each box. On large instruments a switching system allows the organist to select conveniently which shades are to be assigned to each balanced pedal. With the shades not quite fully open, the stops within the inner box are at a normal volume level to balance the rest of the division. With both sets of shades fully closed the soft stops in the inner box are reduced to near inaudibility and the chorus reeds are reduced to the level of color reeds. With all shades fully open, the chorus reeds and mixture are slightly louder than those of the Great. The Vox Humana usually has its own shades with a console switch to shift from pp to mf. There are many expressive possibilities with this system. For example, a crescendo may be started using the ethereal strings with both boxes closed, opening the inner box until the level is equal to the soft stops in the outer box, which are then added. The outer box is opened, adding stops in the normal manner while closing the inner box. The chorus reeds and mixture are drawn and the inner box reopened to complete the crescendo. This is done with ease after a bit of practice. During the installation of our organ in Washington, D.C. at St. Paul’s Church, music director Jeffrey Smith accompanied the Anglican choral service with nothing more than the Swell organ for over a month. It was the double box arrangement that made this possible.

The discrete-terraced dynamic requires having an adequate number of stops of similar or related tonal quality at different dynamic levels so that increased power is achieved in increments by adding stops. This effect is realized by hand registration, pistons, or a well-arranged crescendo pedal.

The third character of dynamic--sudden change--is usually done with manual shifts, second touch, very fast-acting expression shades, or a silent, fast and uniform stop action controlled by either the combination action or the Crescendo pedal and backed up by a steady, responsive wind system. Without this, a symphonic approach to organ playing is impossible. Clattery mechanism is annoying under any circumstances but especially so when sudden changes are required in the midst of a phrase, for example, to underscore an anthem or hymn text. We have introduced a device that adds another means of accent: the Sforzando coupler. It is a simple device wherein a coupler, for example Solo to Great, is made available through a momentary-touch toe lever. A fff combination can be set on the Solo and added to a ff combination on the Great at a climactic point with a brief touch of the toe to create a sforzando effect.

Wind System

There has been much discussion in recent decades about the virtue of flexible or “living” wind. If the wind supply were under the direct control of the player to be manipulated at will, there might be some point to argue. Since it is not, unsteady wind has no place in the symphonic organ. The whole point of the symphonic approach is to seek absolute control by the organist of all resources. So-called flexible wind is set in motion according to the design of the system and the demands being placed upon it. The organist can strive to achieve a reasonably pleasant effect, but he cannot have full control over the result. We believe in providing absolutely steady wind using a multiplicity of regulators, not only to make available different wind pressures, but to assure consistent response from all pipes under all playing conditions. Most chests are fed by at least two steps of regulation, each with spring control, so that the final regulator in the system does not have too much differential for which to compensate. A moving bass line should not upset the treble; intervals and chords should not de-tune when wind demand is high. It’s also important for the wind system to have more than adequate capacity to handle any demand and to have quick refill response so that staccato tutti chords will sound firm and full as they do in the orchestra. All too often, organs with great nobility of sustained tone turn into gasping caricatures when the forward motion of the music goes beyond their limits.

Another important wind system effect is a beautiful vibrato. We have developed a Variable Tremulant device, which allows the organist to control the speed of the beat from a balanced pedal at the console. We employ this normally on solo stops such as our Symphonic Flute. The normal, completely metronomic tremulant of the organ seems a bit unnatural when applied to lyrical passages. The Variable Tremulant allows the organist to simulate the more subtle vibrato used by first class instrumentalists and singers. The Vox Humana is also provided with a slow/fast tremulant switch, to fit both general and French Romantic repertoire.

Action

Speed and precision of both key and stop action are critical to the success of a symphonic organ. Key action must be lightning fast on both attack and release and respond uniformly from all keys regardless of the number of stops or couplers employed. Stop action must be fast and clean, i.e., without any hesitation or gulping on draw or release. Again, the entire action system must be silent. To meet these requirements we use electric-pneumatic action with an individual-valve windchest. (See illustration.) The expansion cell provides a cushioning effect similar to that of a note channel in a slider chest. It also allows placement of all action components near one another on the bottom board to reduce action channeling and increase speed.

The most important musical advantage of individual valves is to eliminate interdependence of pipes. With the exception of mixtures, where all pipes of a given note always speak together, we consider it a serious musical defect to place pipes on a common channel where the wind characteristics are different depending on the number of stops drawn and where there is a possibility of negative interaction within the channel. This is especially true, of course, with combinations of reeds and flues on the same channel and/or several large stops using copious wind. Each pipe should produce the same sound each time it is played no matter how many others are combined with it. As with flexible wind, the organist loses a degree of control over his instrument if random changes in pipe response can occur.

The most important reason for absolute uniformity of chest response under all conditions is the fact that pipes do not have the flexibility to adjust for variations in attack, wind supply, and release as do other wind instruments. A trumpet player, for example, can adjust attack, tone color, and release to an amazing degree of subtlety through precisely coordinated changes in breath, diaphragm, throat and mouth shape, tongue motion and position, embouchure, mouthpiece pressure, etc. In an organ, all of the analogous elements of control are set in place permanently by the voicer with the sole exceptions of wind regulator (diaphragm) and pipe valve (tongue motion). The pipe cannot change to accommodate variations in valve action and wind supply. As described before, wind supply cannot be controlled by the organist. This leaves the valve as the only means of control—and that control is limited even on the best mechanical actions. I submit that this element of control is actually a negative because variations in valve action, being different from the one experienced by the voicer, will be more likely to degrade pipe speech than to enhance it. If the key touch can affect attack and release but not all the other elements of tone production, then it follows that the organist is placed in the position of devoting his thought and energy toward avoiding ugly effects instead of concentrating on elements of performance that can be under precise and complete control. By maintaining absolute uniformity the performer knows what will happen every time a pipe is played.

Rather than searching for the elusive quality of touch control on the organ, we believe it is best to enhance speed of response and accuracy. The best way for an artist to achieve lyrical phrasing, clear articulation, and accent is through absolute control of timing. This is facilitated by keyboards with an articulated touch, providing a definite feel of the electric contact point, and an action that is immediately responsive both on attack and release. A sensitive player can then realize the most intricate and subtle musical ideas on what is essentially a large machine. The more the mechanism gets in the way of performance, forcing certain techniques, the less artistic freedom one has and the further the organ strays from the mainstream of instrumental and vocal music.

Flexible Control

We seldom acknowledge that the organist assumes the roles of orchestrator, conductor and instrumentalist—a daunting task to say the least. In effect, he is given nothing more than the kind of three-stave sketch that a composer might give to an orchestrator. The decisions an organist must make about registration are directly analogous to the orchestrator deciding on instrumentation, doubling, voice leading, chordal balance, etc. Since the organ is really a collection of instruments, the organist also has the conductor’s job of balancing the dynamic levels of individual sounds, accompaniments, inner voices of ensembles, counter melodies, and so on. As an instrumentalist he must have virtuoso keyboard technique. To achieve all of this requires great flexibility of control. The temptation is to load the console with a bristling array of playing aids. However, it is easy to pass the point where complexity becomes self-defeating. Here are some of the guidelines we use in designing consoles. First, the console must be comfortable. Dimensions should be standard and then, as far as possible, adjustable to conform to different organists. In addition to the adjustable bench, we have on several occasions provided adjustable-height pedalboards. We use a radiating and concave pedalboard and also non-inclined manual keys on the theory that when changing from one keyboard to another it is important that they be uniform. Controls must be placed in positions that are easy to see, memorize and reach. The combination action should be as flexible as possible providing the organist the opportunity to assign groups of stops to a piston at will. For example, on our combination action with the Range feature the organist can, while seated at the console, change divisional pistons into generals and vice-versa, assign pedal stops to a manual division, rearrange reversibles, etc. Multiple memories, of course, are now standard and of great value.

In addition to the multiple, assignable expression boxes, Variable Tremulant, and Sforzando coupler mentioned elsewhere, we like to include three special Pedal accessories on larger instruments. The first is a coupler bringing the Pedal to the Choir to facilitate fast pedal passages in transcriptions of orchestral accompaniments. The second is a Pedal Divide which silences the Pedal couplers in the low notes and silences the pedal stops in the upper notes. This allows the simultaneous playing of bass and solo lines on the pedalboard. The third is Pizzicato Bass, with a momentary-touch relay activating pipes of the Pedal Double Open Wood at 8¢ pitch. This provides a clear, pointed attack to the bass line reminiscent of divisi arco/pizzicato double bass writing for orchestra. This effect has been very useful in articulating bass lines, which on the organ are otherwise clouded rhythmically. The octave note is hardly noticeable, but the increase in buoyancy of the pedal line is quite amazing.

The most valuable and perhaps most controversial flexibility device is unification (extension). Certainly nothing other than tracker action has caused more argument over the last 50 years. The individual valve system obviously makes unification both simple and economical. Unification offers several musical advantages as we will see, but there are great dangers as well and it is most unfortunate that it has been so misused that some cannot see any of its advantages. We employ unification in symphonic organs, large and small, wherever a positive musical advantage can be achieved. Unification is, after all, merely coupling of individual stops rather than entire divisions. Whereas coupling is generally accepted, unification is not despite the fact that coupling of individual stops can offer a far more artistic result.

Perhaps the most interesting use of the unification is in creating new sounds. For example, to produce the stunning orchestral effect of trombones, tenor tubas, or horns playing in unison, we developed the Tuben (III) stop. This converts a chorus of 16’, 8’, 4’ tubas or trumpets into a unison ensemble by bringing the 4’ stop down an octave, the 16’ stop up an octave, and combining these with the 8’ stop. The three tones of slightly different scale but similar character create a most appealing unison effect and can be further combined with other stops of similar color at 8’ pitch. We have done the same with 16’, 8’ and 4’ Clarinet stops creating unison ensemble Clarinet tone, a common orchestrator’s device and most valuable to the organist for accompaniment and improvisation.

A traditional use of unification is in pedal borrowing from the manuals. We use this device extensively based on observation that one of the most difficult tasks facing an organist is finding a bass of suitable volume and color. We sometimes also borrow stops from one manual to another so that a stop may be used without tying up another manual with a coupler. A common application is transferring the Choir Clarinet to the Great so that it may be played against the Choir mutations. In some cases we derive an entire third manual on a moderate size organ from stops of the Great and Swell. This manual may either contain solo stops selected from both of the other manuals or a combination of solo stops from one manual and a secondary chorus from the other. A recent example is at Spring Valley United Methodist Church, Dallas, Texas. We occasionally extend stops—commonly downward to 16’ in the manuals and occasionally upward. Stops so treated must not be considered substitutes for primary chorus material. In other words, the organ must stand on its own as a completely straight design before any unification is employed. Stops extended upward must have a character of tone such that if a straight stop were to be employed, the scale would be the same or nearly so. Thus, extensions of string stops are much more likely to be successful than extensions of diapason stops.

Unification should not replace the ensemble of straight voices; it should simply make them available in different ways. If a stop can be useful also in another place or at another pitch and if this does not compromise the integrity of the organ’s design then we believe it is wrong not to include the unification. Failure to do so limits the organist’s musical options. The real point of the straight organ design concept is having all of the necessary independent voices even if one must give up some attractive ones to assure good ensemble. Once this is achieved, there is nothing wrong with making the voices you have do double or triple duty. It is interesting to note that in organs of a century ago a solo stop might be contrived through the use of couplers. A stop name would appear on a combination piston, the function of which was to draw a stop, a unison-off coupler, and an octave coupler thus making a 16’ reed, for example, available at 8’ as a solo stop. One can conclude that the earlier builders were not against unification, they simply did not have the practical means to do it. Unification and other devices to enhance flexibility need not be used by organists who do not like them, but to leave them out of the specification is to deprive others the full use of the costly resources the organ offers. Players of other instruments are always searching for ease of control so that their energy can be concentrated on musicianship. Organists might be a happier lot by doing the same instead of idolizing the organ’s ancient limitations.

Conclusion

We may be entering the greatest era in the fascinating life of the organ. The improvement in substitute electronic instruments has released the organ industry from the burden of making cheap pipe organs for customers with low expectations. Builders are working more and more for those with cultivated taste who appreciate an artistic approach to the craft. Organs are seldom purchased as a piece of church equipment as they were in days past. Now there is a place for all types of high quality pipe organs from antique reproductions to historically informed eclectic schemes to modern symphonic instruments. If the organ is to progress musically, it will be through the further development of its expressive—symphonic—qualities and the realization that the organ is a wind instrument ensemble with great potential, not merely a sometimes-awkward member of the early keyboard family.

Reprinted with permission from the Journal of The British Institute of Organ Studies, Vol. 26, 2002. Peter Williams, chairman; Nigel Browne and Alastair Johnston, editors. Positif Press, Oxford.

Cover feature

Default

Kegg Pipe Organ Builders, Hartville, Ohio

The Sharkey-Corrigan Organ, Texas A&M International University, Laredo, Texas

From the President of the University

Like a birth in the family, a new organ fills the community with expectation, optimism, and joy. Our experience of imagining an organ for Laredo very much mirrored a family’s strategy for acquiring progeny: plan and hope. In August 2003, at Texas A&M International University we opened and dedicated to the people of South Texas our new fine and performing arts center. Conceived to offer the best possible venues for music, dance, and drama, the university planners insisted upon including both a recital hall and a theater. From the very first discussions, the recital hall was to have generously live acoustics to ensure that music played in that room, regardless of dynamic, envelop both player and listener in that three-dimensional experience we all cherish in great halls. A large expanse behind and above the stage in the recital hall, conspicuously vacant at the completion of the building, was simply marked “organ” on the architect’s rendering.
A few days after the gala opening of the new center, E. H. Corrigan, native Laredoan and longtime patron of the arts in Santa Fe, New York, Washington, San Antonio, and Laredo, called and asked that we talk about how to fill that space. Mr. Corrigan’s generous determination to bring to Laredo and South Texas a world-class instrument led first to a national call for proposals, then a contract with Kegg Pipe Organ Builders to build the instrument.

Our vaunted expectations for the organ, both our needs and our wants, established clear indications for design. Since the organ is to inspire and undergird an academic program, we asked that it accommodate repertoire of all periods. Placement in a concert hall would allow for an intimate relationship between the organ and programs of great diversity—choral, band, orchestral. The instrument must be adequate to support a full range orchestral repertoire. While a tracker would be ideal for organ recitals, we asked for the flexibility of a movable console on the stage below the pipes. A plethora of reeds and solo stops, a solo division under expression, and a full positiv division in the forward position rück style provide a variety normally only found on a much larger instrument.
Today, like a family grateful for a trouble-free birth, we recognize that this project was from the first somehow marvelously blessed to be in the hands of Kegg Pipe Organ Builders. “I will be in Laredo on April 24, 2006. The organ will be done by late June,” Charles Kegg promised the anxious organ committee in the fall of 2003. And it was. Voicing is rich and full, a strategy to exploit the marvelous acoustics in the hall. Visually, the organ is nothing short of spectacular, the first instrument of its kind built in South Texas and on the Texas-Mexico border.

The dedication recital, by Dr. David Heller of Trinity University, San Antonio, did, in Dr. Heller’s words, “put the organ through its paces.” A capacity crowd listened attentively and roared to its feet on the last note of Craig Phillips’ Fantasy Toccata. In addition to numerous solo recitals and concerts with the Laredo Philharmonic Orchestra for this year, we are at present planning an organ symposium for the summer of 2007; the topic: “The Concert Organ: Its Music and Its Performers.”

Ray M. Keck, III, PhD



From the Consultant and Artist


Selecting a builder for a new organ in a new concert hall is a rare opportunity for any consultant—and it poses a different set of questions with regard to its tonal design. At the onset of the project, the following criteria were established for the new organ: 1) It should have the ability to perform a wide range of the solo repertoire for organ; 2) It should work effectively with an orchestra, both as soloist and as a member of the ensemble; 3) It should possess the capability for effective collaborative performances with soloists and vocal and instrumental ensembles; and 4) It should serve effectively as a teaching instrument.

Recognizing that this new installation was for a concert hall and not a church, the desire was expressed for a flexibility that would allow for the performance of non-traditional literature, such as transcriptions and literature from the “concert hall” era of the pipe organ in the earlier 20th century. After careful study and analysis of the proposals submitted, TAMIU awarded the contract to Kegg Pipe Organ Builders of Ohio because of the firm’s innovative tonal design, the manner in which the proposal met our criteria, and the potential impact that such an instrument would have on the public. The end result has surpassed our expectations!

Each division of the Sharkey-Corrigan organ has a highly distinctive character. The Great Principal chorus is an evenly-voiced plenum based on 16' pitch and crowned by the Sharp Mixture III. This main body of the division is enhanced with a full complement of 8' registers (in the manner of 19th-century French organ building) and completed with a reed chorus that blends richly into the ensemble. One of the most beautifully voiced stops in the organ is the Harmonic Flute 8', which soars in the upper octaves, making it one of the most effective solo stops in the entire organ.

The Positiv division, cantilevered out in front of the main case of the organ, is a perfect foil to the Great division with its Principal chorus based on 8' pitch (and of a different tonal character from the Great). Completing the Positiv are two marvelous Baroque style reeds—the Holz Regal 16' (with a darker character, perfect for running bass lines), and a brighter Krummhorn.

The Swell division has a complete array of tonal resources for both the solo literature as well as the accompaniment of vocal and instrumental ensembles, capped off by a powerful reed chorus at 16'-8'-4' pitches. Of special note here is the Vox Humana 8'that makes the performance of Franck’s organ works an absolute joy for both the performer as well as the listener.

The Solo division gives this new organ its truly distinctive character with its combination of solo and ensemble registers. The Diapason 8' is especially effective when all of the divisions are coupled together, by reinforcing that particular pitch line. The Tromba chorus at 16'-8'-4' works extremely well in a full-organ registration much like the Bombarde division of a 19th-century French organ. The dark and haunting Clarinet along with the piquant English Horn provide the performer with greater opportunities for solo voices, particularly in transcription literature. One of the unique features of this instrument is the Solo Tuba, which is housed in its own expression box, making it useful not only as a solo stop but as an ensemble register as well, particularly in building up a crescendo to imitate the brass section of an orchestra.

And finally, the Pedal division provides effective support for the entire instrument, featuring an independent Principal chorus, softer flue stops, string stops to support the orchestral strings of the Solo division, and a full reed chorus based on 32' pitch. Judicious duplexing of manual stops to the pedal provides even greater tonal flexibility for the performer.

As an artist, I can honestly state that this organ is one of the most flexible and musically satisfying instruments I have ever played. Each stop carries its weight, and each stop does what the drawknob tells you. The balance between the divisions is so finely honed that one can select registrations with complete ease. It was a joy to conceive and put together an inaugural recital that combined the works of Hancock, Bach, Franck, Duruflé, and Phillips with more non-traditional repertoire by Lefébure-Wely, Ramón Noble, and Edward Elgar. And if all of that were not enough, the design of the console and the operating system for the combination action (one of the most user-friendly systems I have seen to date) made the entire experience of recital preparation and performance a breeze.

Texas A&M International University and the city of Laredo have a musical instrument in which they can take great pride. It will serve them well in the years to come and help cultivate future generations of organists and organ aficionados.

Dr. David A. Heller

Trinity University

San Antonio, Texas



From the Builder


The new Texas A&M International University organ was at once a formidable challenge and a golden opportunity. The challenges were many: to build into a reasonable size instrument a tonal design that could play with conviction organ literature of all styles, accompany great choral works, and also crown the resident Laredo Philharmonic Orchestra in romantic splendor. Dr. Ray Keck, university president, organist, project lightning rod, and Bach aficionado, also made known his desire for accurate renderings of Bach. All this was to be done with an instrument that is not exceptionally large and with some significant space limitations. We are delighted to have been chosen for this landmark instrument.
Our tonal design was based on the simple fact that this was to be the only instrument on campus (indeed the only concert-size organ in a large geographical area), and needed to be used for teaching, practice, recital, and with orchestra. It needed to have a full spectrum of dynamic range from very delicate to confronting a full orchestra—and win. For practice and teaching, the majority of voices needed to speak at comfortable volume levels that would focus on color and deliberately counteract aural fatigue.

In addressing these needs, we started with four independent Principal choruses, each with its own character and purpose that provide proper polyphonic clarity. The articulation is not pronounced, but precise speech is always apparent. The Great chorus is full and noble. The Positiv is light and delightful, equal in impact to the Great. The Swell is richer than the Great with its slotted 8' and deeply textured Plein Jeu. The glory of these choruses is that Bach, Buxtehude and Bruhns are sheer delight, and it is not until six or seven preludes and fugues later that the organist realizes that not even a single unison coupler has been touched! When the couplers are engaged, the new organ at TAMIU begins a remarkable transformation. The same stops that gave such clear distinction to divisions in the Baroque literature now become contributors to a more global full organ sound. Beginning with the softest Flauto Dolce it is possible to build a seamless crescendo to full organ that is an intricate fabric of sound, at once cohesive and fabulously rich in texture and color.

Each stop in the organ does exactly what one would expect and need it to do, but there are several specific tonal features that will enjoy further exploration here. The Great has two reed choruses. The Trompetes are light and are intended for early works where the chorus reeds are subordinate to the flues. The Tromba chorus is intended for those works where the reeds must command the respect of the principals and dominate them. For those in-between works, the Tromba chorus is located in the Solo box such that they can be reined in as required.
There are three Cornets in the organ. The Great has a Principal Cornet that is commanding. Built décomposé, it can be tailored. The Positiv Cornet is of lighter principal character and has a flatted seventh added to the normal third and fifth, giving the stop a lovely edge that is very distinct. The Swell Cornet is of flutes and is serenely gentle.

The Solo Diapason IV 8¢ is a collection of unenclosed principal stops from the Great and Pedal, all playing at 8' pitch. This quartet of 8' principals gives the organ a velvet Diapason line. The stops are drawn from the Great Principal, Great Octave, Pedal Octave and Pedal Choralbass.

The Tuba is located in the very heart of the organ case, in its own swell box. On 18" wind, this stop can solo above the full ensemble or with shade control can be subtly brought into the full ensemble, blending easily with it and expanding it horizontally.

The case design here presented a particular challenge. The TAMIU organ is located in a low balcony above the hall stage. There is not a lot of height to allow the organ to visually soar. The solution was to build a Rückpositiv that is lowered into the back stage wall. This has the visual effect of anchoring the organ to the stage in addition to providing the classical forward position for the division. The main case is considerably wider than it is high. Organ cases are happiest when their proportions are as pipes: tall and slender. This was not possible here, and much care was taken to give the case as much verticality as possible. The lowered Positiv case helps with this. The center three towers of the main case stand forward of the side Pedal towers. The change of depth is accomplished as the outside pipe flats curve. The result is very satisfying in the room.

I approach every organ in a comprehensive manner. Placement of divisions within the room and in relation to each other is as important as scaling and voicing. The case design is a classic five tower design plus Positiv with a contemporary flair. The gilded pipe shades are a stylized interpretation of the university seal, which includes a globe showing the Western hemisphere. The internal layout has the Great high and in the center. The Swell is behind it. The Pedal upper work is below the Great. The Positiv is below and forward of the Great. Thus the main manual divisions are centered in the hall with their physical relationship matching their musical relationship. This enhances polyphonic music when the organ is played uncoupled and blends the divisions together when the divisions are combined. The Solo division is in the right side of the case and the Pedal basses are in the left side. For those that are interested in unusual pipe design, the 32' Trombone is large scale and is built with Haskell bass pipes, which are not common when used with reeds. They save considerable lateral space over mitering when height is severely restricted.

Working with the TAMIU staff could not have been easier or more delightful. We are indebted to Dr. Ray Keck, university president, who envisioned the instrument from the start and drove the project; Dr. David Heller, consultant and artist of the opening concert, for his thoughtful help and encouragement; physical plant manager Richard Gentry for his instant and complete help during installation; and of course to E. H. Corrigan for his generous funding of the entire project. The organ bears the name of Sharkey-Corrigan in memory of Mr. Corrigan’s mother.

My personal thanks also to the Kegg staff including Fred Bahr, Phil Brown, Joyce Harper, Mike Carden, Phil Laakso, Walt Schwabe, Rick Schwabe, and Tom McKnight. In addition to these people being the finest craftspeople I know, they are also the finest friends.

Charles Kegg

Kegg Pipe Organ Builders

Kegg Pipe Organ Builders

Texas A&M International University, Laredo, Texas

52 stops, 69 ranks, 4003 pipes

GREAT Manual II (3.5" wp)

16' Violone

8' Principal

8' Violone (ext)

8' Rohrflute

8' Harmonic Flute

4' Octave

4' Spitzflute

22⁄3' Twelfth

2' Fifteenth

13⁄5' Seventeenth

11⁄3' Full Mixture IV

2⁄3' Sharp Mixture III

16' Contra Trompete

8' Trompete (ext)

Tremulant

16' Tromba (Solo)

8' Tromba (Solo)

4' Clarion (Solo)

Zimbelstern (5 handbells, adjustable speed, volume and delay)


CONTINUO manual II

(duplexed from Positiv)

8' Gedeckt

4' Koppelflute

2' Flute

2' Principal

11⁄3' Quinte

This division also has its own small one-manual console including blower control and transposer switch that will lower the played pitch by one half-step for use with historical instruments. This console may be used in place of the large main console for chamber work.


SWELL Manual III (4" wp)

16' Bourdon (metal)

8' Principal

8' Bourdon (ext)

8' Salicional

8' Voix Celeste

8' Flauto Dolce (Solo)

8' Flute Celeste (Solo)

4' Octave

4' Flute

22⁄3' Nazard

2' Piccolo

13⁄5' Tierce

2' Plein Jeu V

16' Basson

8' Trompette

8' Hautbois (ext)

8' Vox Humana

4' Clairon

Tremulant

Swell 16-UO-4


POSITIV Manual I (2.75" wp)

8' Principal

8' Gedeckt (wood)

4' Octave

4' Koppelflute

22⁄3' Quinte TC (from 11⁄3¢)

2' Octave

11⁄3' Quinte

Sesquialtera II–III

1' Mixture IV

16' Holz Regal

8' Krummhorn

Tremulant

Positiv 16-UO-4


SOLO Manual IV (5" wp)

8' Solo Diapason IV*

8' Gamba

8' Gamba Celeste

8' Flauto Dolce

8' Flute Celeste TC

8' Clarinet

8' English Horn

Tremulant

16' Tuba TC (ext)

8' Tuba (18≤ wp, separate enclosure)

4' Tuba (ext)

16' Tromba

8' Tromba (ext)

4' Clarion

*From Great 8' Principal, 4' Octave, Pedal 8' Octave, 4' Choralbass


PEDAL (5" wp)

32' Subbass (56 pipes)

16' Open Diapason (wood)

16' Violone (Gt)

16' Subbass (ext)

16' Viole (44 pipes)

16' Bourdon (Sw)

8' Octave

8' Violone (Gt)

8' Subbass (ext)

8' Viole (ext)

8' Bourdon (Sw)

4' Choralbass

4' Cantus Flute (Gt Harm Fl)

22⁄3' Mixture IV

32' Trombone (full length, 68 pipes)

32' Harmonics (derived)

16' Trombone (ext)

16' Trompete (Gt)

16' Basson (Sw)

8' Trombone (ext)

8' Trompete (Gt)

4' Clarion (ext)

4' Clarinet (Solo)

4' Krummhorn (Pos)



Inter-manual couplers

Great to Pedal 8, 4

Swell to Pedal 8, 4

Positiv to Pedal 8, 4

Solo to Pedal 8, 4



Swell to Great 16, 8, 4

Positiv to Great 8

Solo to Great 16, 8, 4



Solo to Swell 8



Swell to Positiv 16, 8, 4

Solo to Positiv 8



Great / Positiv Transfer (including keys, pistons and couplers)

All Swells to Swell



Photos by Charles Kegg unless otherwise indicated.

Cover feature

Files
Default

A. E. Schlueter Pipe Organ Company, Lithonia, Georgia
Hendricks Avenue Baptist Church, Jacksonville, Florida

The early morning hours of December 23, 2007 were of significance and great loss for the Hendricks Avenue Baptist Church. Due to contract negotiations with the symphony, the then-locked-out musicians of the Jacksonville Symphony Orchestra performed at Hendricks Avenue Baptist Church with a “Messiah Sing” on the evening of December 22. The proceeds of this performance were to benefit the Health and Welfare fund of the members of this institution. This was the last performance ever held in the sanctuary. Sometime in the morning hours of the 23rd a fire started and in a matter of hours consumed the church to the foundation. On the brink of Christmas, the stunned members and staff assembled on the church grounds in front of the still-smoldering pyre of their sanctuary, to console, pray, and plan. From this immeasurable loss they resolved to bolster their presence in the Jacksonville community with a new church and renewed dedication to their ministry.
Reverend Dr. Kyle Reese assembled a team to plan and oversee the rebuilding of the sanctuary. They vowed to have the church open no later than December 23, 2009, when they would again open the church to the public with a performance of Handel’s Messiah. In addition to Pastor Reese, key members who were to play a role in our building an instrument were O’Neal Douglas, chairman of the Sanctuary Renovation Task Force; Bill Mason, organ committee chairman; Reverend Tommy Shapard, Minister of Music and Worship; and Brenda Scott, organist. A constant presence on this construction project was O’Neal Douglas, who served as a living Gantt chart. He invested untold hours to assure the clear communications and coordination between all the different trades involved to build this church by the required completion date.
Lost in the fire was a three-manual, 48-rank Möller that had been installed in 1989. As one of the last instruments from Möller, it was a very good example of their building style and had been well loved by the congregation. Prior to working with our firm as a sales representative, Herbert Ridgeley Jr. represented the Möller firm. He had worked with then minister of music Reverend Kendall Smith on the installation of this Möller instrument. Marc Conley of our staff had worked on this instrument when he was employed by Möller. With these past affiliations, we began the initial discussions with the church as they considered a replacement pipe organ and evaluated firms that might build this instrument. In the words of Tommy Shapard, the charge of the organ committee was “to design an instrument with a variety of colors and levels of expression available in the new instrument to give our congregation and choir the opportunity to sing together more vitally and creatively as a worshipping body.”
I will always recall an exchange that took place early in our meeting with the organ committee. As we talked about a proposed stoplist, we were five minutes into the discussion when Chairman Mason raised a finger and jokingly said, “Arthur . . . from this point forward whenever we say Baptist, we want you to think Presbyterian.” He was referring to the landmark III/62 instrument our firm was building at that time for New York Avenue Presbyterian in Washington and its ties to President Lincoln and theologian Peter Marshall. (See cover feature, The Diapason, July 2010.) I came to find a much deeper meaning in his offhand quip. In public and private discussions, I have heard other builders refer to a “type” of organ they design by denomination. Personally, I do not believe one serves any church well by imprinting their view of any particular denomination—a generic “this is it” approach to stoplist and tonal design of an instrument. This is true regardless of whether it be Baptist, Methodist, Presbyterian, Catholic, Episcopal, or any other denomination. There are and always will be the subtle and not so subtle differences in a church’s worship style. Often in my professional career I have had a church explain their “traditional” worship only to find a worship style that I might personally find to be contemporary, or often a church that describes itself as “contemporary” to be traditional. The euphemism “blended” often used by many churches to describe their music in worship does not solve any identity issues either. As a builder, it is incumbent upon you to experience a church’s worship with your own eyes and ears and then really listen to how your client will use the organ in their worship. This is the only surefire way to refine a stoplist and scale sheets into a cogent amalgam that will allow you to design, voice, and tonally finish an instrument that truly serves the vision of the church you are working for.
A very real challenge in the design of this instrument was that the church moved very fast in the design of a building to assure their December 23, 2009 first service. By the time a contract was signed with our firm, the basic design of the building was locked in place and key building materials had been ordered. We had to work with the architect to design space for an instrument in a building that was already well defined. To allow for an instrument, space would have to be created. As a design team, we found that if we changed the width of the hallway access to the baptistery on the right and left and had a concrete lentil poured above the hallway and above the baptistery, room could be provided for a 43-foot-wide chamber of varying depth and elevations. Taking into account the sloping ceilings in the chambers, we planned a left-to-right division orientation of Swell, Great/Pedal, and Choir. The enclosed divisions of the organ have tone openings on their front and also on the side openings into the center Great and Pedal division. These side openings provide a coalescence and focus for the enclosed resources into the central axis of the instrument.
The chancel façade is designed to frame the baptistery. The façade is silver with polished mouths and features pipework from the 16′ Principal, 16′ Violone, 8′ Octave, and 8′ Diapason. The casework has a maple finish to match the church furnishings. To support the needs of audio-visual functions in their ministry, a projection screen was incorporated into the center section of the upper organ case.
The completed organ is 60 ranks, divided among three manual divisions in the chancel and a floating Antiphonal division in the rear of the church. My specification and scaling for this instrument has its roots in American Classicism, with an emphasis on the English elements found within this stylistic construct. All of the organ divisions are weighted around 8′ chorus structure. The Great is designed around a diapason chorus that has richness and warmth but that still maintains clarity in its phrasing. The Swell features an independent 8′ Principal, which allows the 8′ Swell string scales to be narrower, since these stops do not need to provide the core 8′ flue foundation. The Gemshorn in the Choir is generously scaled, with a wide mouth to support a function in this division analogous to a foundational Spitz Principal. The mixtures in the enclosed divisions are pitched at 2′ and provide a logical completion to the enclosed division principal choruses. This allows completion of the 8/4/2 chorus ladder without breaks in pitch or the need for independent 2′ principals as single stop draws. In addition to avoiding the stridency sometimes found in mixtures with pitches above 1′, this treatment of the mixtures also frees up the 2′ pitch registers for independent manual flutes.
While individually differing in color, the two enclosed divisions have parallel flue pitch registers for support of choral accompaniment. With a large, effective shade front, these divisions provide ample resources of weight and color against the human voice.
The organ reeds were designed with English shallots, which prove much more favorable in a dryer American acoustic. As is our common practice, the organ reeds are placed on separate reservoirs, separate tremolos, and individual unit electro-pneumatic windchests. This treatment allows the reeds to be freed from the strictures of the manual flue wind pressures. This allows complete freedom in scale, shallot design and treatments, and tongue thickness. With a separate tremolo, achieving the correct depth and speed on the reed stops does not become as elusive as it can sometimes be when flues and reeds share a common plenum.
For a large festive solo voice, the chancel organ features a high-pressure English Tuba. This stop is located in the Choir division, and under expressive control it can be used as a darker ensemble reed when it is dynamically caged. It is carried down to the 16′ register to effectively ground the Pedal division.
A very complete Pedal division was desired, with multiple pitches represented from 32′ through 4′. Just the 16′ registers alone represent nine of the 24 stops in the Pedal division. In addition to independent Pedal registers, full advantage was taken of manual-to-pedal duplexes. The result is a plethora of stops under the organist’s control, with a full range of colors and dynamics.
Early on in the design of this instrument, we prepared for a 10-rank Antiphonal. Due to the beneficence of several members, the church was able to contract for this “prepared for” item and have it installed with the chancel instrument. Visually, the rear organ takes its design from the chancel façade. Positioned between the two cases is an 8′ Trompette En Chamade with brass bells. Cognizant of its position in the church and the presence of the high-pressure English Tuba in the chancel organ, the stop was voiced on a moderate 7½ inches pressure. By its position, it has presence and lacks the offensiveness that is sometimes associated with this stop. The core of the Antiphonal organ includes a complete 8′ principal chorus, a lyrical 8′ Gedeckt, and an ethereal pair of 8′ Erzahler Celestes.
Foundational support for the Antiphonal division is provided by a Pedal 16′ Stille Gedeckt and 8′ Stille Principal in the Antiphonal Pedal division. In addition to providing foundation for the rear division, these stops are also very useful in larger organ registrations by adding definition and dimension to the chancel bass presence.
Never to be forgotten in an instrument of this size is the need for quiet contemplative moments. Early in our meetings we talked about the need for the organ to have the resources for what we began to refer to as “the whisper.” In the Choir division, we added a Ludwigtone stop. This is a wooden set of pipes with a dividing wall in the center of the pipe that has two separate mouths. Its unique construction allows each pipe to produce two notes, one of which can be tuned off-beating. In our stoplist as the Flute Celeste II, when it is drawn with a closed box, full couplers, and the Antiphonal Klein Erzahlers added to it, with a light 16′ Pedal stop, there is a moment of being surrounded by an ethereal magic that is at once all enveloping and yet without any weight.
Mechanically this organ uses our electro-pneumatic slider chests, with the organ reeds placed on electro-pneumatic unit chests. Conventional ribbed box regulators are used for the winding system.
The resources of the organ are controlled by a three-manual drawknob console. Built in the English style, the console sits on a rolling platform to allow mobility. The console exterior is built of maple, with an ebonized interior. The console features modern conveniences for the organist, such as multiple memory levels, programmable crescendo and sforzando, transposer, MIDI, and the ability to record and play back organ performances.
To allow full control in the tonal finishing of this instrument, we set sample pipes on the windchests in the organ chambers and then removed the pipes from the chambers to continue work with a portable voicing machine located in the chancel. This allowed us to work unimpeded and be more accurate with cutups and initial nicking, feathering, and flue regulation than could have possible within the confines of the organ chambers and the sea of pipework on each chest. After “roughing in” the pipework voicing, the stops were reinstalled in the organ chamber for final voicing and tonal finishing. In a process that lasted months, the tonal finishing was completed by a team including Daniel Angerstein, Peter Duys, John Tanner, Marc Conley, and Bud Taylor. In addition to our tonal finishers, our installation team included Marshall Foxworthy, Rob Black, Patrick Hodges, Jeremiah Hodges, Kelvin Cheatham, Joe Sedlacek, and Wilson Luna. I am thankful for their dedication and the long hours they put into this project to make sure that our tonal ideals for this instrument were not only achieved but exceeded.
The new sanctuary was finally at a point of completion by November 16 that we were able to begin the installation. The organ was brought up divisionally to allow autonomous work by our staff in multiple divisions. This allowed 40 ranks of the organ to be brought online when first heard in public on December 23, 2009. On this day, our staff was able to return home to be with their families during Christmas, and two family members, Art Schlueter Jr. and Arthur Schlueter III, were able to begin their Christmas together at the public opening of this church with Handel’s Messiah. Forever in my memory will be standing tall as father and son during the Hallelujah Chorus. As with all organ projects, there was still work to be done to complete and finish the organ, but it was a satisfying conclusion to a year that saw the installation of multiple new instruments by our firm and the fulfillment of a promise to this congregation and community.
A final chapter to this story must be told. To assist their search for an organbuilder and evaluate plans for a new instrument, the organ committee engaged local Jacksonville organbuilder, Jim Garvin, as part of their working group. As I developed my proposal for the church, he was a ready translator to discuss the minutiae of the organ proposal—from chest design, stop type, material construction, winding systems, etc. As a builder, I found it a great pleasure to work with Jim, who ably served as a liaison between the organbuilder and the church. Sadly, during the building of this instrument Jim began a battle with cancer. Even as he was weakened by his fight with the cancer, he never wavered in his role as consultant through the organ installation and dedication. I am happy to say that he lived to sing and worship with this instrument. One of our collective proudest moments was at the inaugural organ dedication with Dr. Al Travis. With a solid look in the eye and a firm stance, we exchanged handshakes as equals who had both worked to the best of our abilities on behalf of Hendricks Avenue Baptist Church. Earlier this year Jim lost his fight with cancer. His funeral was held at Hendricks Avenue Baptist Church, where I again returned to hear organ and choir, but this time to say goodbye. I will forever be grateful for my consultant and colleague I worked with in the completion of this project. Reminiscent of the way the project started, I once again heard Handel, as Jim’s final request for his service had been the Hallelujah Chorus.
Additional information on our firm and projects can be viewed at www.pipe-organ.com or by writing A. E. Schlueter Pipe Organ Company, P.O. Box 838, Lithonia, GA 30058.
—Arthur E. Schlueter III, tonal and artistic direction

All photos taken by Tim Rucci (www.timrucci.com)

Hendricks Avenue Baptist Church
Three manuals, 60 ranks

GREAT—Manual II
(unenclosed) (16 ranks)
16′ Violone 61 pipes
8′ Diapason 61 pipes
8′ Violone 12 pipes
8′ Flute Harmonique 49 pipes
(1–12 Pedal Bourdon)
8′ Bourdon 61 pipes
4′ Octave 61 pipes
4′ Spire Flute 61 pipes
22⁄3′ Twelfth 61 pipes
2′ Super Octave 61 pipes
IV Mixture 11⁄3′ 244 pipes
III Klein Mixture 2⁄3′ 183 pipes
16′ Double Trumpet 61 pipes
(English shallots)
8′ Trumpet 12 pipes
16′ English Tuba (Choir) (non-coupling)
8′ English Tuba (Choir) (non-coupling)
4′ English Tuba (Choir) (non-coupling)
Chimes (Choir)
Zimbelstern 9 bells
Great to Great 4′
Tremulant

CHOIR—Manual I (enclosed)
(13 ranks)
16′ Gemshorn 12 pipes
8′ Hohl Flute 61 pipes
8′ Gemshorn 61 pipes
8′ Gemshorn Celeste 49 pipes
8′ Flute Celeste II 80 pipes
(Ludwigtone)
4′ Principal 61 pipes
4′ Spindle Flute 61 pipes
2′ Harmonic Piccolo 61 pipes
11⁄3′ Quint 61 pipes
III Choral Mixture 2′ 183 pipes
8′ Clarinet 61 pipes
(English shallots with lift caps)
8′ English Tuba 61 pipes
(non-coupling)
Tremulant
Choir to Choir 16′
Choir Unison Off
Choir to Choir 4′

SWELL—Manual III (enclosed) (14 ranks)
16′ Lieblich Gedeckt 61 pipes
8′ Geigen Principal 61 pipes
8′ Viole de Gamba 61 pipes
8′ Viole Celeste TC 49 pipes
8′ Rohr Flute 12 pipes
4′ Geigen Octave 61 pipes
4′ Nachthorn 61 pipes
22⁄3′ Nazard TC 49 pipes
2′ Flageolet (from 16′) 24 pipes
13⁄5′ Tierce TC 49 pipes
IV Mixture 2′ 244 pipes
16′ Bassoon 61 pipes
(English shallots with lift caps)
8′ Trumpet 61 pipes
(English shallots)
8′ Oboe 12 pipes
4′ Clarion 12 pipes
Tremulant
Swell to Swell 16′
Swell Unison Off
Swell to Swell 4′

ANTIPHONAL—floating division (10 ranks)
8′ Weit Principal 61 pipes
8′ Gedeckt 61 pipes
8′ Klein Erzahler 61 pipes
8′ Klein Erzahler Celeste 49 pipes
4′ Principal 61 pipes
III Mixture 2′ 183 pipes
8′ Trompette En Chamade 61 pipes

ANTIPHONAL PEDAL
16′ Stille Gedeckt 12 pipes
8′ Stille Principal 32 pipes

PEDAL (7 ranks)
32′ Violone (digital)
32′ Bourdon (digital)
16′ Principal 32 pipes
16′ Violone (Great)
16′ Gemshorn (Choir)
16′ Subbass 32 pipes
16′ Lieblich Gedeckt (Swell)
8′ Octave 32 pipes
8′ Violone (Great)
8′ Gemshorn (Choir)
8′ Bourdon 12 pipes
8′ Gedeckt (Swell)
4′ Choral Bass 12 pipes
4′ Bourdon 12 pipes
IV Mixture 22⁄3′ 128 pipes
32′ Posaune (digital)
32′ Harmonics (wired Cornet series)
16′ Trombone (ext Tuba) 12 pipes
16′ Double Trumpet (Great)
16′ Bassoon (Swell)
8′ English Tuba (Choir)
8′ Trumpet (Great)
4′ Clarion (Great)
4′ Oboe Clarion (Swell)

Inter-manual couplers
Great to Pedal 8′, 4′
Swell to Pedal 8′, 4′
Choir to Pedal 8′, 4′
Antiphonal on Pedal

Swell to Great 16′, 8′, 4′
Choir to Great 16′, 8′, 4′
Antiphonal on Great

Swell to Choir 16′, 8′, 4′
Antiphonal on Choir

Antiphonal on Swell

MIDI controls (programmable as preset stops) (with record/playback) (audio included)
MIDI on Pedal
MIDI on Great
MIDI on Swell
MIDI on Choir

Combination system with a minimum of 128 levels of memory

Cover feature

Files
webAug10p26-27.pdf (195.11 KB)
Default

Marceau & Associates Pipe Organ Builders, Inc., Seattle, Washington
Trinity Parish Episcopal Church, Seattle, Washington

From the builder
My first contact with Trinity Parish took place in the summer of 1978, when, as an employee of Balcom & Vaughan Pipe Organs of Seattle, I was on the crew that removed the church’s 1902 Kimball instrument. I recall the rather thick layer of furnace dust and grime that made the removal fairly dirty! Since none of the windchests or reservoirs were to be retained in the new organ project, these components were destined for the dump. That project incorporated some of the original Kimball pipework, but not with any degree of success. I subsequently relocated to Portland, Oregon and founded Marceau Pipe Organs in 1985.
I had begun maintenance of the Trinity pipe organ in 1983, when Martin Olson was appointed organist/choirmaster. As the existing console began to show signs of advancing age, Marceau Pipe Organs was awarded the contract of building our first three-manual, tiered drawknob console. With the able assistance of Frans Bosman (who built the console shell), we assembled new components from P&S Organ Supply (keyboards), Harris Precision Products (stop action controls), and Solid State Logic (combination action—now Solid State Organ Systems), and installed this in the fall of 1989.
The second phase focused on a redesign of the organ chamber to accommodate new slider-pallet windchests (produced in the Marceau shop) and a façade that would pay homage to the original Kimball façade. The budget did not allow for the total number of stops to be installed at that time. It was through fate that this instrument was completed! The massive Nisqually earthquake of 2001 almost closed this historic building for good, if it were not for the unshakable vision of this congregation, led by their rector, the Rev. Paul Collins.
During the time in which the church was being rebuilt and upgraded, we were fortunate enough to acquire a large pipe organ of about 35 ranks. From this inventory, stops that were prepared for future addition could be added at about half the cost of new pipes. One of the unique trademarks of a Marceau pipe organ is the inclusion of vintage pipework that is rescaled, revoiced, and re-regulated to be successfully integrated with stops, both old and new. The Trinity Parish pipe organ is no exception. A quick glance at the stoplist suggests a number of musical possibilities that make it possible to interpret organ repertoire from Bach to Manz and everything in between!
In 2005, I moved back to Seattle to open a Seattle office for our activities in the Puget Sound region. In 2008, we moved into a small but very useful shop in the Ballard district and have seen our work increase dramatically since then. While I enjoy each project that comes through the shop, I will always think fondly of our Opus IV at Trinity Parish and how that instrument continues to be one of great satisfaction and pride.
—René A. Marceau

From the organist
I started as organist/music director at Trinity Parish Church in 1983, over 27 years ago. At that time, there was a recently remodeled pipe organ, with no façade pipes, grille cloth, and a used console that was gradually failing. I had worked with Marceau & Associates on other organ projects in the past and engaged him to build us a new console. This proved to be the start of a professional and personal friendship that has lasted many years! This was Marceau’s first console and was planned with tonal revisions and (hopefully) new pipework in the future. I didn’t know where the money was to come from, but I had a lot of faith. Shortly after the new console was built, notes started going dead, and we found out that the organ had used Perflex instead of leather; we faced a future with an increasing number of dead notes.
At this time the vestry encouraged us to look at the existing tonal plan, and the organ was totally rebuilt using slider chests. Each of the three arches of the organ had façade pipes installed, helping to keep the visual appearance of the organ consistent with the nineteenth-century English Country Gothic architecture. At this point, we were out of money and only about a third of the planned pipework was installed.
Our planning for fund raising came to an abrupt halt on Ash Wednesday 2001. The Nisqually earthquake hit about an hour before the 12:10 Ash Wednesday service. The organ was not too badly damaged, but the building was unusable. Part of the tower collapsed into the nave, and the north and south transept walls moved outward, so that daylight could be seen coming through the walls! We were red-tagged by the city, meaning that no one could go into the building. For almost five years we worshipped in the parish hall, using the piano and a lovely one-manual positive (built by Marceau), lent to us by the Seattle AGO chapter. At times we didn’t know if the money would be found to rebuild the church, but Trinity persevered and the millions of dollars needed were raised.
As we approached the completion of the church restoration, we realized that if we didn’t finish acquiring the missing pipework now, it might never happen. The vestry gave approval, and thanks to a lot of searching by René Marceau, we added the missing 20 ranks of pipes—all recycled pipework. Today, the 19th-century sanctuary has solid wood floors, hard reflective walls, and very little carpet. Thanks to Marceau’s voicing skills, the pipework from 1902 works with the ranks added in the 1970s and 2000s.
During the first several weeks in the rebuilt sanctuary and “new” organ, I was surprised that almost everyone stayed and listened quietly to the postlude, but I didn’t think it would last. I was proven wrong again! Four years later, almost everyone still stays for the postlude! Years ago, under the leadership of Ed Hanson, there was a weekly lunchtime organ recital every Wednesday. When the church and the organ were rebuilt, I decided to revive that tradition, and for some years now we have had a weekly organ recital, often featuring student organists from the area. These recitals, combined with other concerts here at Trinity, make this organ one of the most heard organs in the Seattle area.
Martin Olson
Organist/music director

History
Trinity Episcopal Church has a long history as one of Seattle’s oldest congregations—and music has been a part of that history from the very beginning. While the parish’s first organ was a reed organ of unknown manufacture, the parish has the credit of being the first to bring a pipe organ to Seattle. Preserved vestry notes from February 2, 1882, page 82, indicate a signed order to buy an organ “of Mr. Bergstrom’s make” for $1,500. This is further corroborated in Thomas E. Jessett’s Pioneering God’s Country—The History of the Diocese of Olympia, 1853–1953, in which he states on page 33, “The first pipe organ in Washington was installed in Trinity Church, Seattle, in 1882.”
By 1900, the parish was ready to acquire a larger instrument, and a contract was drawn up towards the purchase of a larger pipe organ. The vestry even announced they were willing to spend $6,000 if necessary. Such was the importance of music to the parish!
A contract was signed with the Hutchings Organ Co. of Boston for an organ to cost $2,500 plus $138 for a water engine to provide wind. The organ was shipped in December 1900. Such a listing does not appear on the Hutchings opus list, so it was likely built under the name of Hutchings-Votey, whose opus list is not complete. Coincidentally, the parish requested Dr. Franklin S. Palmer of San Francisco to come test the completed organ and to play the dedicatory concert. Dr. Palmer would later become the organist of St. James R.C. Cathedral in Seattle, and was principal in the design and acquisition of that congregation’s well-known 4-manual, 1907 Hutchings-Votey. Sadly, the Hutchings-Votey only lasted about a year, and was destroyed by a fire within the church on January 19, 1902.
By May 2 of that same year, the vestry awarded a contract to the W. W. Kimball Co. of Chicago for a three-manual organ to cost $7,500. It had 30 speaking stops and 29 ranks, and despite the growing influence of orchestral organs, the Kimball was built more along mid-to-late 19th-century tonal designs, with a mostly complete 16′, 8′, 4′, 22⁄3′, and 2′ principal chorus on the Great, capped by an 8′ Orchestral Trumpet. The Swell reflected more of the orchestral influence, with one 16′ flue register, six 8′ flue registers, and only one 4′ flue register, plus an 8-8-8 reed complement. Even the Choir sported a 16′ flue, but included the standard 2′ Harmonic Piccolo and 8′ Clarinet among its stops. And the Pedal of 16-16-16-8 included a very fine wooden Violone. Monthly recitals were given by the organist, and often included a soloist, a quartet, or even the full choir.
In 1945 the organ was electrified by Charles W. Allen, successor to Kimball representative Arthur D. Longmore. An only slightly used Kimball console was acquired from the Scottish Rite Cathedral in Tacoma, one of two installed there. The chest primaries were electrified, some stops were moved from the Great to the Choir, and a few new ranks were added/substituted. The organ lasted pretty much unaltered in this form until 1977.
Beginning in 1975, Balcom & Vaughan Pipe Organs, Inc. of Seattle had been discussing options for rebuilding the Kimball at Trinity. Various stoplists and drawings were considered. In 1979 the parish finally decided upon a plan, and the organ was rebuilt. But the Balcom & Vaughan was essentially a new organ, on new chests, with predominantly new pipework, and retaining 12 selected voices from the venerable old Kimball. The impressive 1902 Kimball façades were eliminated, and little ‘buffets’ of exposed pipework took their place. The B & V was designed along “American Classic” lines akin to Aeolian-Skinner, which is where then B & V president, William J. Bunch, had been working for many years. While the new organ was more transparent-sounding than the Kimball, and offered more color in the way of mutations and mixtures, the blend between new and old was not entirely satisfying, nor did the brighter ensembles seem to adequately fill the church space.
In 1989 the Portland firm of Marceau & Associates provided a handsome new terraced drawknob console to replace the existing used Kimball stopkey console. Several preliminary stop changes were made with existing pipework to improve the sound of the organ. In 1995 Trinity Church awarded a contract to Marceau & Associates for the rebuilding of the existing organ. This effort sought to take the existing pipework and through rescaling, recombining, and revoicing, create a more cohesive whole, including appropriate new pipework. Each of the manual divisions now has a principal chorus in proper terraced dynamics. Part of this project was to recreate the three Kimball façades in spirit, but with a new twist. The church now has an eclectic 3-manual organ, with bold principals, colorful flutes, two strings with mated celestes, mutation voices, mixtures, and reeds of both chorus and solo colors. And all is housed behind a handsome façade of polished zinc principals in the original three bays, providing a sense of visual continuity with the past.
Jim Stettner
Organ historian

Stoplist description
As with any instrument, the most critical areas of interest are the principal choruses. Our Opus IV is blessed with two divisions with 8′ Principals (Great and Positiv). The Great principal chorus is based on a normal scale 8′ Principal, with the low 19 notes in the façade. The 4′ Octave, 2′ Super Octave, and III–V Mixture are all stops retained from the 1978 project, rescaled and revoiced for a more energetic, colorful presence in the room. The Positiv principal chorus is 1–2 notes smaller, with a higher-pitched Mixture. Added to this chorus is the Sesquialtera II, of principal character, which imparts a “reedy” quality to the overall sound. Of particular note is the 8′ Principal. It is scaled 2 notes smaller than the Great 8′ Principal; when heard in the chancel it has a very Geigen-like quality, but takes on more character in the nave, and is a perfect complement to its “big brother.”
The Swell principal chorus, based on the 4′ level, includes a III–IV Mixture, which works well with the reeds in this division. The Pedal principal chorus is based on the 16′ Principal (of wood) and progresses up to the III Mixture, which includes a Tierce rank. I find this addition completes the Pedal chorus without the need to include the reeds.
The Great flutes (8′ Rohrflute, 4′ Koppelflute) provide the foundation for the rest of the flute stops. Contrasting and complementary stops appear in the Positiv (8′ Gedackt, 4′ Spillflute, 2′ Lochgedackt), with smoother-sounding stops in the Swell (8′ Holzgedackt, 4′ Nachthorn, 2′ Waldflute). Of particular note is the Positiv 2′ Lochgedackt, whose character is gentle enough to soften the assertive sounds of the Sesquialtera.
There are two sets of strings, found on the Swell and Positiv manuals. The Swell 8′ Salicional and Positiv 8′ Gemshorn are from the 1902 Kimball; the Voix Celeste is of an unknown builder, while the Gemshorn Celeste is an original Dolce built by Stinkens in the late 1960s.
It is interesting to note that all of the manual reeds were built by Stinkens at some point in time. My colleague, Frans Bosman, was very successful in regulating each stop to work well in both solo and ensemble roles. The Great 8′ Trompete is dark and robust in character, contrasting with the brighter, more aggressive Swell 8′ Trompette. The Swell 8′ Oboe is also bright but at least one or two dynamic levels softer. The unit Fagott rank is from the 1978 project, appearing in the Pedal only. It was extended to play on the Swell at both 8′ and 4′ pitches. The Positiv 8′ Krummhorn is scaled more as a Dulzian, giving this stop the power to add color to the Positiv chorus. The most surprising set of reeds is found in the Pedal. Both the 16′ Posaune/8′ Trumpet and 4′ Clarion are vintage pipes. There was some concern about tonal and dynamic blend; these fears were laid to rest when, after regulating these stops, they were the perfect balance to the full ensemble!
There are Tierce ranks in every division. The Great mounted Cornet (located behind the façade pipes) can be used for classic French repertoire, the Positiv Sesquialtera II can be used in both solo and ensemble roles, the Swell Cornet decomposée allows for the individual mutations to be used separately or in combination, and the Pedal Mixture contains the tierce rank and is quite effective in chorus work.
—René A. Marceau

Current Issue